
REVEALED
NICK HAMPSHIRE

<^

VIC TM

REVEALED

NICK HAMPSHIRE

DUCKWORTH

First published in 1 982 by
Gerald Duckworth & Co. Ltd

The Old Piano Factory

43 Gloucester Crescent, London NW1

© 1 982 by Nick Hampshire

All rights reserved. No part of this publication

may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means,

or otherwise, without the prior permission of the

publisher.

ISBN 0-7 156-1 699-4

British Library Cataloguing in Publication Data
Hampshire, Nick

1 . Vic (Computer)
I. Title

001.64'04 QA76.8.P47

ISBN 0-71 66-1 699-4

Typeset by Centrepoint Typesetters Ltd., London
Printed in Great Britain by

Redwood Burn Ltd., Trowbridge
and bound by Pegasus Bookbinding, Melksham

INTRODUCTION

This book is a collection of discoveries about the VIC, how and why it

works, and how to use these facts to write better programs and perfornn more

interesting functions. The book is divided into five sections, each section

covering one of the principal functional blocks into which the basic VIC

computer can be divided. The different aspects of the VIC dealt with in each

section cover most of the advanced applications for which the VIC can be

used.

The VIC is produced in several slightly different versions, in different parts

of the world. This book is written for version 7 machines which are designed

for use with European PAL TV sets. The US version 6 machines use the 6560

VIC chip which is compatible with the US 525 line TV. The Japanese version 1

machines use the 6560 and also have Japanese character keyboard and

character generator. There are slight differences in the operating system

software of these three versions but they do not affect most of the information

in this book.

I should like to thank Commodore UK and Commodore US for their

assistance in writing this book, in particular the following people: John Baxter

and Malcolm North of CBM UK and Mike Tomczyk, Shiraz Shivji and Bob

Russell of CBM US.

Nick Hampshire

CONTENTS
1 — The 6502 Microprocessor - — V

2 - Vic System Software — 42

3 - The 6561 Video Interface Chip - 110

4 - The 6522 Via and the User Port -150

5 - Vic I/O Functions - 186

APPENDIX^ 1 - CBM Codes 237

Ul- Wedge Program 243

Wi- 6502 Inst. 253

UA- Hex-Dec 255

75!^5 - Circuit Diagrams 257

it '6- Monitor Inst. 263

IV

2 — 6502 Microprocessor

3 — Memory Usage and 6502 Instruction Cycle

7 — Accumulator and Arithmetic

11 — Addressing Modes

14 — Processor Status Register and

Use of Flags

16 - Branches, Jumps and Program Counter

19 - Stack Register and Its Use

21 — Index Registers

23 - Data Modify Instructions

24 — Interrupts and Initialisation

27 — Machine Code on the Vic

32 - Writing Machine Code Programs

INDEX
REGISTEM

INDEX

heqister

K STACK
POINT

reoisteh

OS

ACCUMULATOR

o

E INPUT
DAT*

DATA «US

BUPfER

• A A A
. :

1

ii
INTERRUPT

tOQIC

INSTRUCTION

DECODE

STATUS
REGISTER

TIMING

CONTROL

CLOCK
QENCRATOR

" ffl OUT
-ffJOUT

INSTRUCTION
REGISTER

4 t I A I 1 A

-* R/W

— OSE

-PDO

-*02
-03

Fig. 1 — Blockdiagramof internal structure of 6502.

THE 6502 MICROPROCESSOR

When a program is run on the VIC all the instructions are performed

by one component, the microprocessor. There are a range of different

microprocessors, this particular device is manufactured by MOS
Technology and known as the 6502. It is an eight bit microprocessor,

eight bits meaning that during each instructTbn or operation cycle,

eight bits of data are operated upon or transferred simultaneously.

A block diagram of the internal structure (known as the system

architecture) is shown in Figure 1. This may appear rather complex,

but it can be divided into two sections. One called the. control, section,

the other the register section. The control section lies on the right side

of the drawing, the register section on the left. All the processing is

carried out within the register section of the chip, instructions

obtained from program memory are implemented by a series of data

transfers within this section. Each of the 56 different instructbns

which the 6502 recognises involves a unique set of data transfers. It is

the control section which recognises the instruction, and initiates the

correct sequence of data transfers. The instructions enter the

processor vja the data bus and are latched into the instruction register

to be decoded by the control logic. Since most instructions require

more than one data transfer within the register section, a source of

timing signals is required to ensure the correct sequence, this is done

by the timing control unit.

Each data transfer which takes place within the register section, is

the result of the decoding of the instruction register and the timing

control unit by the control logic, whose outputs enable the relevant

registers. When programming at a machine level a primary concern is

the control and manipulation of data within the processors registers.

To understand the function of the microprocessors instruction set,

one must understand the function of its registers.

MEMORY USAGE AND THE 6502 INSTRUCTION CYCLE

The 6502 microprocessor has a 16 line address bus, this enables it to

access 2^® or 64K of memor/. Any one of the 65,536 nnemory locations

can be accessed by the processor placing the correct binary value

corresponding to the nnemory location on the address bus. The eight

bits or byte of data located at the addressed memory location can

then be read, or if required changed, via the eight line data bus. Since

all the processor registers and memory are only eight bits long it

requires two bytes to specify a sixteen bit memory address. The
bottom eight bits are referred to as the high order address. By dividing

the 16 bit address into two 8 bit sections the entire addressable

memory area can be split into logical blocks, or pages. Memory within

each page can be addressed using the low order address byte, each

page has 256 memory locations and there are 256 pages. Page zero

starts at location and ends at address 255, page one goes from

address 256 to 511. Apart from two important exceptions the concept

of paging is not important to the programmer, these being, page one
which contains the processor stack, and page zero which has special

addressing modes.

It is usual to express memory addresses and their data contents in

hexadecimal notation, this being easier to write than binary, yet more
easily converted into binary than a decimal value. The convention is to

identify hexadecimal values by preceding the value with a dollar si^n,

this prevents any confusion as to whether the value is in hexadecimal

or decimal. In hexadecimal any address is represented as a four digit

value, the first two digits being the high order address byte and the

bottom two digits the low order address byte. The paging concept is

thus clearly seen in a hexadecimal address. Any data value is

represented in hexadecimal as a two digit value.

Memory is used by the processor for the storage of both programs

and data, the data can be either included within the program, usually

as constants, or in separate data tables. Programs can be stored either

in RAM or ROM memory but variable data can only be stored in RAM
memory. Each instruction in a machine code program requires

between one and three bytes of memory. With a one byte instruction

the data on which it operates is stored in one of the processor

registers. A two byte instruction consists of the instruction first

followed by a one byte operand, this can be either a zero page address

or a data constant. An instruction occupying three bytes contains the

ADDRESS BUS

15 8 7

PAGE LOCATION

. .
255
256

512
513

768
769

page

page 1

page 2

xxxxxxxx

65,535

DATA BUS

7

INST OR
DATA

Fig. 2 — Relation between address, data, and memory location.

Instruction Mennory Contents Function Start Address

LDA#$02
$A9 INST + 1

$02 OP + 2

STA $0253

$8D INST + 3

$53 OPLSB + 4

$02 BP MSB + 5

CLC $18 INST + 6

ADC #$50
$69 INST + 7

$50 OP + 8

STA z$55
$85 INST + 9

$55 OP + 10

RTS $60 INST + 11

Fig. 3 — How a program is stored in memory.

instuction followed by a full sixteen bit address in the fornn; low order

byte followed by high order byte.

When the processor executes the progrann instructions stored in

nnennory it goes through a fixed instruction cycle, this gets the

instruction fronn memory, performs the instruction, and then repeats

by getting the next instruction, and so on until the end of the program.

There are three stages in the instruction cycle, they are;

1

)

fetch the instruction.

2) decode the instruction,

3) execute the instruction.

Fundamental to the operation of the instruction cycle is the internal

processor register called the program counter. The program counter

holds the 16 bit address of the next instruction, and the first stage in

the instruction cycle is to transfer the contents on the program

counter onto the address bus. The instruction located at that memory
address is then transferred to the processor instruction register. The

second phase of the cycle is to decode the contents of the instruction

register to generate the correct sequence of internal and external

signals to perform the execution stage of the cycle. The execution

phase of the cycle depends on the instruction and will include the

fetching of any operand bytes plus the manipulation of one or more

processor registers. After fetching an instruction or an operand byte

the program counter is incremented by one so that at the end of the

instruction cycle it contains the address of the next instruction and

the process is repeated.

Fig. 4 — Sequence of processor operations in executing an instruction.

Step 1 — program counter points to location of instruction by

placing the memory address on the address bus.

Step 2 — the instruction code is transferred from memory to the

instruction register where it is decoded.

Step 3 — the program counter is incremented to point to the operand

byte of the instruction in the following memory location,

this byte is placed in the accumulator. The decoded instruc-

tion then results in a specific operation being performed on

the byte in the accumulator.

Step 4 — The program counter is incremented to point to the next

instruction in memory and the sequence returns to step 1

.

PROCESSOR MEMORY

Instruction 1

XXXX XX XX
Operand

Instruction 2

Operand
Operand
instruction 3

etc

Data Bus

iv
STEP

2

IR

Inst 1

Op
Inst 2

Op

PP

IR

TMTTT
DECODE

TnnTTT

Data Bus

STEP
3

Address Bus

+1 -» PC

STEP
4

Address Bus

:>

i>

Inst 1

Op

inst 2

Op

Op

Inst 1

Op 1

Inst 2

Op

Op

inst 3

Fig. 4

THE ACCUMULATOR AND THE ARITHMETIC UNIT

The accumulator has no exact function, it is a general purpose

register. To nnove a byte of data from one part of memory to another it

must be temporarily stored in the accumulator. The accumulator is

also used to store the intermediate and final results of a logic or

arithmetical operation.

Data transfers between the accumulator and memory (since the VIC

is a memory mapped system this also includes I/O) are very important

and account for about 40% of all the instruction used in a machine

code program. To move a byte of data from one memory location to

another requires two instructions;

LDA,M1 — Load accumulator with contents of first memory

location.

STA,M2— Store contents of accumulator in second memory

location.

Memory locations Ml and M2 are accessed by one of a variety of

addressing modes, these will be looked at later in this section. Having

loaded a byte of data into the accumulator the processor can be

instructed to perform arithmetic or logical operations upon it. Only

about three percent of all instructions in a program are arithmetic or

logical operations.

Since the 6502 is an eight bit machine all the arithmetic and logical

operations are between two eight bit numbers. The arithmetic or

logical operation is performed in the ALU or arithmetic logic unit, this

requires that one of the operands is in the accumulator and the other

is in a memory location. The result of the operation is placed in the

accumulator. Placing the results in an eight bit accumulator causes a

problem when adding two numbers whose sum is greater than 255.

This is overcome by giving the accumulator a ninth bit, called the

carry. The carry bit, or flag, is one bit in the processor status register,

and is set when the contents of the accumulator exceed 255. This

applies to the performance of binary arithmetic by the processor, the

6502 is fairly unique in that it can also do decimal arithmetic. In this

mode each byte contains two binary coded decimal numbers,

numbers from to 99 can be stored as a single byte. As in the binary

mode, the cam/ flag is set when the addition of two numbers gives a

result greater than 99. The processor is placed in the decimal mode by

a "set decimal mode" instruction, SED, which sets another bit within

the processor status register.

There are two basic arithmetic instructions, ADC — which is "add

memory to accumulator with earn/", and SBC — which is "subtract

memory from accumulator with borrow". Both instructions can be

either binary or decimal in nature and can use a variety of addressing

modes to indicate the memory location.

The ADC instruction adds the value of the data in the memory

location, plus the carry from the previous operation, to the value in

the accumulator, storing the results in the accumulator. If the result

exceeds 255 in the binary mode, or 99 in the decimal mode, then the

cam/ flag is set, if the result is zero then the zero flag is set. An

example, if we want to add the two numbers, 25 and 189, and store

the result in memory location 10 (decimal) we could use the following

sequence of instructions:

Q[_Q 18 (^l^'s clears the carry flag)

LDA 25 A9 1 9 (Load accumulator with 25)

ADC 1 89 69 BD (Add 1 89 to accumulator and carry)

STA 10 8D OA 00 (Store result in location 1 0)

The instructions in the left column are in mnemonic code, followed

by a decimal number or memory location. The same sequence of

instructions appears on the right as hexadecimal values. Addition of

two numbers where one or both have values greater than 255 needs a

process known as multiple precision addition, calling for the use of

the cam/ flag. Adding two sixteen bit numbers, requires two

additions. The carry is first cleared and the two lowest order bytes, (a

sixteen bit number would be stored in two bytes of memory) added

together. The result of this addition is stored in a memory location as

the low order byte of the result. Now the two high order bytes are

added, plus any carry generated by the first addition, the sum stored

as the' high order byte of the result. Using this method numbers of any

size can be added together, whether the processor is in binar/ or

decimal mode.

Addition can be performed on signed numbers. Positive numbers

added to negative numbers, or two negative numbers added. The

sign is stored as bit seven of the highest order byte, a zero for positive

and a one for negative. Addition takes place as in ordinary arithmetic,

the only exception being that the carry flag for the highest order byte

is replaced by the overflow flag. This performs the same function but

records an overflow or carry from bit seven, rather than bit eight.

Negative numbers are stored not as ordinary binary numbers but as

two's complement, which is best described as the inverse of that

nunnber minus one. All the ones become zeros and vice versa for all

bits, except bit one, thus binary five is normally 00000101 — in two's
complement form it become 11111011.

The SBC instruction subtracts the value of data in a memory
location (and borrow) from the value in the accumulator, storing the
result in the accumulator. Two's complement arithmetic is used

throughout. The borrow flag is the same as the carry flag used in

addition, whereas before an addition the carry flag is always cleared,

before a subtraction it is always set. The result of subtraction affects

the carry or borrow flag, it is set if the result is greater than or equal to

zero. Similarly for subtraction of signed numbers the overflow flag is

set if the result exceeds +127 or —127 for single precision seven bit

arithmetic. The SBC instruction can be used with either binary or

decimal numbers with both multiple precision and signed arithmetic.

To subtract two decimal numbers, say, 18 from 27 use the following

sequence of instructions, the decimal mode is used to illustrate its

function:

(set decimal mode instruction)

(set borrow flag)

(load accumulator with 27)

(subtract 18 from accumulator and borrow)

8D OA 00 (store result in location 1 0)

The instructions on the left are in mnemonic code, on the right in

hexadecimal, note that in the decimal mode the hexadecimal and
decimal numbers are the same.

The 6502 instruction set does not include instructions to perform
multiplication or division. Users requiring these functions must write

special subroutines to perform them, or use the subroutines within

VIC Basic. Multiplication is a process of repeated addition: 3 x 5 is the
same as 5 + 5 + 5. For large numbers this could be a lengthy process,

and programming tricks are required to minimise this. Division is a

process of repeated subtractions: 15/5 can be performed as the
following sequence, 15 — 5 = 10, 10 — 5 = 5, 5 — 5 = 0, since three

subtractions were required, the answer is 3. As with multiplication,

programming techniques are needed to reduce the time taken to

divide large numbers.

Besides arithmetic operations the ALU can perform logical

operations between data in memor/, and the accumulator. There are

SED F8

SEC 38
LDA27 A9 27
SBC 18 E918
STA10 8D0A

four such instructions AND, BIT, OR and EOR. The AND instruction

performs a bit by bit logical AND operation between a memory

location and the accumulator, storing the result in the accumulator.

This operation can be used to reset or mask a single bit or group of bits

in a memon/ location. In the decimal mode each byte holds two digits,

the AND instruction can be used to extract one digit. Where there is a

zero in the operand, there is a zero in the result. To mask out the most

significant decimal digit stored in the bottom four bits, the

accumulator is ANDed with 00001 1 1 1 or hexadecimal OF

LDA25 A9 25 (load the accumulator with decimal 25)

AND OF (hex) 29 FO (AND the accumulator with 00001 1 1 1 binary)

STA 10 8D OA 00 (store the result in location 1 0)

On running this program location 10 will contain 05, the 2 being

masked out and replaced by a 0. The BIT instruction is identical to the

AND, except that the result is not stored in the accumulator and only

the status register flags are set.

The OR instruction performs a binary OR on a bit by bit basis

between the contents of the accumulator and a memory location, the

result is stored in the accumulator. The main use of this instruction is

to set a bit or group of bits in a memory location, a logical 1 in the

operand field produces a 1 in the corresponding bit of the result. The

EOR or "Exclusive OR instruction" is identical to the OR, except that a

logical 1 appears in the result only if there is a 1 in the operand field,

and a in the accumulator for the corresponding bit. The main use of

the EOR instruction is to produce the two complement of a byte.

10

ADDRESSING MODES

Every instruction in a nnacliine code program contains information

on the position of the data on which that instruction will operate. The

same instruction can exist in several forms depending on where the

data is located and each of these forms is referred to as an addressing

mode. There are thirteen different addressing modes and most

instructions can be performed in more than one mode. The LDA
instruction can use one of eight different modes of addressing. The

thirteen address modes can be divided into seven basic modes and

six modes which are combinations of one of the basic modes and the

indexed addressing mode.

Implied

Accumulator

Immediate

Absolute

Zero page
Relative

Indirect

Absolute X indexed

Absolute Y indexed

Zero page X indexed

Zero page Y indexed

Indirect indexed

Indexed indirect

The simplest mode is Implied addressing, which is used exclusively

by single byte instructions operating on the internal processor

registers. In an instruction like CLC (Clear Carry) no data is accessed

therefore no address is required. It is implied that a register, in this

case the Status Register, is to be operated upon.

Accumulator mode addressing is used in instructions which

perform logical operations on data in the accumulator. This mode is a

version of implied addressing and all instructions are single byte.

Immediate addressing is used whenever the programmer wants to

perform an operation using a constant. To put a value of, say 25, in the

accumulator we would use the LDA instruction in the Immediate

mode. In this form of addressing the data is stored in the byte

immediately following the OPCODE.

11

Neither the Immediate or implied addressing modes use a memory

address where data is stored, and are of little use in operations with

variables. To address any location in memory would require a full

sixteen bit or two byte address stored in the Operand part of the

instruction. This address points to a memory location where the

variable upon which the operation being performed is currently

located, or is to be stored. This form of addressing is known as

"Absolute addressing".

A shortened form of absolute addressing can be used when the

memory location being accessed lies on page zero of memory. This is

the only case where the concept of paging has any importance in the

6502, page zero is just the bottom 256 memory locations. This is called

"Zero Page Addressing", and uses a single byte address to point to

the location of data within page zero. A two byte Zero page address

mode instruction is much faster than three byte Absolute addressing

and it is good practice to store all variables in page zero. When running

machine code programs on the VIC only the bottom 144~Bytes of page

zero should be used, storing data in locations above this will probably

cause the machine to crash.

A special form of addressing is used exclusively by branch and jump

instructions, known as "Relative addressing". In this addressing

mode the instruction is followed by a single byte Operand. This does

not specify an address as in zero page addressing, but a displacement

from the address where the branch instruction is stored. Since the

displacement must be either positive or negative, bit eight is used to

signify the jump direction, this allows the jump to be up to 127 bytes

forward or 128 bytes backward.

In some programs it may be necessary to have a computed address

rather than a fixed address, as in absolute addressing. This is done

using indirect addressing, instructions in this mode have just a single

eight bit address field which points to the effective address as two

bytes in page zero. The data address is thus not stored directly in the

Operand field of the instruction, but, indirectly in page zero, all the

indirect addresses are indexed except for the JMP instuction.

Indexed addressing uses the contents of one of the two index

registers as an offset to the address stored as the Operand part of the

instruction. The address stored in the Operand can be either an

absolute two byte address, or a zero page single byte address. This

12

gives a total of four different indexed addressing modes, two for each

index register. The primary use of indexed addressing is in the access

of successive memory locations used for the storage of a table or

block of data.

13

THE PROCESSOR STATUS REGISTER AND THE USE OF FLAGS

The processor status register occupies a very important position in

the systenn architecture of the 6502. It is an eight bit progrannnnable

register, unlike the other registers and its function lies between the

control and register section of the processor. It is the only register

which actually affects the control logic. Seven of the eight bits are

used, and each bit, or flag, has a specific function.

Flags fall into three categories, those controllable only by the

programmer, those controllable by both programmer and processor,

and lastly those controlled solely by the processor. Only one flag falls

into the first catagory, the Decimal mode or D flag, occupying bit three

of the status register. This flag controls whether the processor
performs binary or decimal arithmetic. It can be set by a SED
instruction, after which all arithmetic is performed in the decimal

mode, until the D flag is cleared by a CLD or clear decimal mode
instruction.

Three flags fall into the second category: Carry, Overflow and
Interrupt disable. The Carry or C flag is located in bit of the status

register, it is modified either by the results of certain arithmetic

operations or by the programmer. The carry is also used as a ninth bit

during arithmetic operations or by the shift and rotate instructions.

The instruction used to set the carry flag is SEC, it can be cleared by
CLC.

The Overflow or V flag occupies bit six of the status register, and is

used during signed binary arithmetic to indicate that the result was of

greater value than could be contained within the seven bits of the

signed byte. The V flag has the same meaning as the carry flag, but

also indicates that a sign correction routine must be used if this bit is

"on", since the overflow will have erased the sign in bit seven. The
programmer can only clear the V flag by using the CLV instruction.

The Interrupt disable, I flag, controls the operation of the

microprocessor interrupt request input, and is located in bit two of

the status register. Interrupts play a very important part in the VIC's

design, and each time there is an interrupt the I flag is set by the

processor. This stops the processor being interrupted by more pulses

on the IRQ line until the interrupt handling program has been
completed with a return note an interrupt instruction clearing the I flag.

14

The I flag can also be set by the programmer with an SEI Instruction to

prevent the processor being interrupted, as during a precision timed

loop subroutine. At the end of such a program the interrupt line can be

returned to its normal function by clearing the I flag with a CLI

instruction.

The last three flags; Zero, Negative and Break, are controlled solely

by the processor. The Zero and Negative flags are either set or reset by

nearly even/ processor operation. The Zero or Z flag is set by the

processor whenever the result of an operation is 0, as when two

numbers of the same value are subtracted from each other. The

Negative or N flag is set equal by the processor to bit seven of the

result of an operation. One of its primary uses is during signed binary

arithmetic, if the N flag is set then the result is a negative number. The

Break or B flag is set by the processor during an interrupt service

sequence. The Z flag occupies bit one, the N flag bit seven and the B

flag bit four of the status register.

The seven status bits or flags in the status register each have a

meaning to the programmer at a particular point in the program.

Although the carry and overflow flags are used in arithmetic

operations the major use of flags is in combination with the

conditional branch instructions. This gives the programmer the

capability of incorporating decision making instructions within a

program, to test a flag, and, depending on the state of that flag, take

one or two courses of action. A conditional branch is functionally the

same as the IF... THEN GOTO... statement in Basic. There are a range of

these instructions performing different functions and testing

different flags. Anyone writing a machine code program must keep

track of the expected state of all flags at every instant throughout the

program. Failure to do this is one of the commonest causes of a

program not working or producing the wrong result. An example

would be failure to clear the cam/ flag before an addition. On odd

occasions it would have been set by a previous instruction, and thus

give rise to erroneous results.

15

BRANCHES, JUMPS AND THE PROGRAM COUNTER

To understand the use of branch and jump instructions the concept

of program sequencing must be understood, and its control by the

program counter. The program counter, or PC, consists of two eight

bit registers. Lil<e the other registers they communicate with the

internal processor data bus, but the outputs are also connected to the

sixteen lines of the address bus. One of the PC registers is connected

to the bottom eight address lines and is called PCL, the other, the PCH

is connected to the eight high order address lines. Although two eight

bit registers, they function like a single sixteen bit register. It is the

program counter which controls the addressing of memory, by being

a program, or data address pointer and, as such it contains the address

of the next memon/ location to be accessed.

At the beginning of the program the PC must contain the address of

the first instruction. This is one of the functions of the operating

system reset software. It is also preformed by the SYS and USR
commands when entering a machine code program from Basic. The

instruction fetched from memory is stored in the instruction register,

to be decoded by the control logic. This process takes one clock cycle,

during which time the program counter is incremented by one to

point to the next memory location. The processor usually requires

more than one byte to interpret an instruction, this first byte contains

the basic operation and is known as the OP CODE. The following one

or two bytes, known as the OPERAND, contain either a byte of data or

the address of the data on which the operation will occur. An

instruction may require up to three sequential memory locations, the

program counter first points to the OP CODE which is fetched from

memory and stored in the instruction register. The PC is incremented

and points to the next memon/ location, the contents of which are

fetched and stored in the ALU, in a three byte instruction this will be

the low order address of the data. The program counter is again

incremented and the high order address fetched from the third

memon/ location. The processor then latches the two bytes of the

address onto the address bus via the ALU, fetches the data, and

performs the operation. Having completed the operation, which

usually takes about four clock cycles, the processor increments the

program counter to point to the next instruction and the process is

repeated. In this manner the program counter will continue to

advance until it reaches the maximum memory location, fetching

instructions and addresses.

16

A sequential program would lack a feature fundamental to

computing, the ability to test the result of an operation, and

implement various options based on the results of the test. Firstly

flags can be used to test the result of an operation, secondly the

contents of the program counter must be changed to point to the start

of a new program. The simplest way of changing the contents of the

program counter is with the JMP or "Jump to new location"

instruction. This as its name implies does not perform any tests on the

results of a previous operation. It simply loads a new sixteen bit

address into the program counter thereby forcing the processor to

start operating at the new address. The JSR or "Jump to Subroutine"

instruction is similar to JMP except that the current contents of the

program counter are saved on the stack to be restored on the

completion of the subroutine by an RTS, "Return from Subroutine"

instruction.

There are eight different conditional branch instructions, they can

be divided into four groups, each testing the state of one of the status

register flags. The four flags tested by the conditional branch

instructions are: Carry, Zero, Negative and Overflow, one instruction

tests if the flag is set, and the other if it is clear. The two instructions

for the Carry flag are BCC or "Branch on Cam/ Clear" and BCS or

"Branch on Carry Set". The Operand contains the address to which

the program jumps if the condition being tested is true. The

addressing mode used is unique to conditional branch instructions, it

is called relative addressing.

In relative addressing the new address is stored as just one byte,

which is added to the current contents of the program counter. To

enable the program to branch both forwards and backwards the

relative address can be either a positive or a negative number. The

fact that relative branch addresses are stored as a signed single byte

limits the maximum size of the branch to either 127 bytes forwards or

128 bytes backwards, this may seem a limitation but in practice it is

not.

The eight conditional branch instructions are:

BMI — Branch on Result Minus
Testing the N flag

BPL— Branch on Result Plus

BCC— Branch on Carry Clear

BCS— Branch on Carry Set

17

}

}
Testing the C flag

BEQ— Branch on Result Zero

BNE— Branch on Result Not Zero

BVS— Branch on Overflow Set

}

}

Testing the Z flag

Testing the V flag

BVC— Branch on Overflow Clear

Most operations involve the setting of one or nnore flags, but a small

group of test instructions are specifically designed to set flags for

testing by a branch instruction. The most commonly used is the

"Compare Memory and Accumulator" or CMP instruction. It allows

the programmer to compare a value in memory to one in the

accumulator without altering the value in the accumulator. If the two
values are equal the Z flag is set, otherwise it is reset. The N flag is set

equal to bit 7 and the carry flag is set when the value in memory is less

than or equal to that in the accumulator. The BIT instruction tests

single bits in memory with the corresponding bits in the accumulator.

18

THE STACK REGISTER AND ITS USE

The stack register is mainly concerned with the handling of

interrupts and subroutines. It is an eight bit register, its function is

identical to that of the program counter since it is an address

generator. It is used to point to an address in page 1 of memory,

(locations 256 to 511), known as the "Stack". The stack is a set of

memory locations starting at 511 and filled downwards from that

location with a maximum size of 256 bytes. It is organised as a UFO or

"Last In First Out" structure, which means that the last byte of data

stored on the stack is the first byte to be accessed. Every time data is

pushed onto the stack the stack pointer is decremented by one, and

each time data is pulled off the stack, the stack pointer is incremented

by one. The addressing of the stack is independent of the program and

based purely upon chronological events. The stack is used as a

temporary data store, the most common data being re-entrant

addresses generated by subroutines and interrupts.

Every time a subroutine is called in a machine code program the

current contents of the program counter are saved. On returning from

the subroutine the program can be re-entered at the correct location.

Similarly every time the processor is interrupted the current address

in the program counter is saved before the processor performs the

interrupt servicing routine. A subroutine may call other subroutines,

requiring the storage of several re-entrant addresses in the stack. The

last re-entrant address stored is the first address reloaded into the

program counter at the end of the subroutine, hence the LIFO

structure of the stack. The calling of subroutines by other subroutines

is termed "subroutine nesting" and is a common occurrence in

machine code programs. The size of the stack in the 6502 limits the

user to 127 levels of nesting, usually far more than is needed. Basic

subroutines also use the stack for the storage of the return address

pointers and register contents.

A subroutine is called by a JSR or "Jump to Subroutine"

instruction. This pushes the current contents of the program counter

onto the stack. A location stored as the Operand field is then loaded

into the program counter. This causes the processor to jump to a new

section of the program and start execution from the location in the

program counter.

The return from a subroutine to the main program is accomplished

by he RTS or "Return from Subroutine" instruction. This loads the

19

return address from the stack into the program counter. It also

increments the program counter to point to the instruction following

the JSR. The stack pointer is also incremented to point to the next

subroutine address if any.

The stack can be used by the programmer as a temporary storage

location for data passed to a subroutine. The programmer needs a set

of instructions to allow him to put data onto the stack and read it

back. The current contents of the accumulator can be transferred to

the next location on the stack by the PHA or "Push Accumulator onto

Stack" instruction. Data can be read from the current location pointed

to by the stack pointer into the accumulator, by the PLA or "Pull

Accumulator from Stack" instruction. Both instructions

automatically cause the stack pointer to be incremented or

decremented by one. An example of data storage in the stack is saving

the contents of the processor status and index registers when a

subroutine is called. The contents of the status register can be pushed

onto the stack by the PHP "Push Processor Status on Stack"

instruction and then transferred from the stack back to the status

register by the PLP "Pull Processor Status from Stack" instruction. To

save the contents of the index registers they are first transfered to the

accumulator and then placed on the stack. When writing any machine

code routine for the VIC which will be called from a Basic program it is

very important to first save the contents of the processor accumulator

and index registers on the stack. The contents of these registers are

then restored prior to returning to Basic. Failure to do this will result

occasionally in system crashes.

Normally the stack pointer points to a location in page one, the

location being automatically incremented or decremented by the

processor as required, but in some situations the programmer has to

be able to change the stack pointers contents. The stack pointer is

loaded by transferring the contents of the X index register to the stack

pointer with a TXS "Transfer Index X to Stack Pointer" instruction.

This instruction is used at the beginning of a program to initialise the

stack pointer, it is performed automatically on the VIC as part of the

power up reset routine. Re-initialising the stack on the VIC causes

problems, usually resulting in a crash and should thus be avoided. The

current contents of the stack pointer can be read by loading it into the

X index register with a TSX "Transfer Stack Pointer to Index X"

instruction.

20

THE INDEX REGISTERS

Having a fixed address in the Operand field of an instruction poses

problems when accessing a sequential block of data, such as a table or

an input buffer. One method would be to use a string of load

instructions in the form, load data from address 1 — perform

operation — load data from address 2 — perform operation and so on.

This is obviously highly wasteful of memory space, it would be more

efficient if this program was written as a loop. To do so would require

that the address stored as the Operand field of the load instruction is

incremented each time the program goes round the loop. In this way

the Operand address will always be pointing to the next byte of data

to be accessed. This method is useful, but, execution time is

considerably greater than in the straight line programming

technique, also it is often undesirable to use a self modifying program.

A more sophisticated approach is the use of a counter, the contents

of which are automatically added to the address in the Operand field

of the instruction. Such a counter is called an Index register. There are

two Index registers in the 6502, both are eight bit registers, labelled X

and Y. They are used by instructions in one of the indexed addressing

modes. The simplest is absolute indexed addressing, in this mode the

contents of one Index register is added to the address in the Operand

field of the instruction, giving a new address from which data is to be

accessed. The fact that the Index registers are only eight bit registers

limits the maximum size of data block accessed using indexed

addressing to 256 bytes. In practice the majority of tables are shorter,

it is not therefore a significant limitation. If longer tables are required

then programming techniques, such as indirect indexed addressing,

are used to overcome this limitation.

The Index registers are controlled and manipulated by a range of

special instructions. A number can be loaded to, or stored from the

Index register and a memor/ location, by the LDX, LDY and STX, STY

instructions. Similarly the contents of the Index registers can be

compared with a value in memory to test if a conditional branch

should take place by using the CPX and CPY instructions. The

contents of an Index register is changed to point to the next address

by increments or decrementing it by one. To count up, the instruction

used is INX or INY, to count down DEX or DEY. The remaining Index

register instructions allow the transfer of the contents of the

accumulator into one of the Index registers and vice versa. TAX and

21

TAY transfer the accumulator contents into X and Y registers

respectively and TXA, TYA transfer the Index register contents to the

accunnulator.

In some programs it may be necessary to have a computed address,

rather than a base address with an offset, as in absolute indexed

addressing. This is done using indirect addressing, instructions in this

mode have just a single eight bit address field which points to the

effective address as two bytes in page zero. The data address is thus

not stored directly in the Operand field of the instruction but,

indirectly in page zero, all the indirect addresses are indexed except for

the JMP instruction. Two modes of indirect addressing are possible.

Indexed Indirect and Indirect Indexed Addressing.

Indexed Indirect addressing index register X is added to the

Operand zero page address. This points to locations where the sixteen

bit data address is stored. One of the major uses of this addressing

mode is in retrieving data from a table or list of addresses, as in polling

1 /O devices or performing string operations.

Indirect Indexed addressing the sixteen bit address pointer in page

zero is first accessed then offset by the contents of index register Y to

give the true data address. The location of the pointer is fixed,

whereas in the indexed indirect mode it is variable being offset by the

contents of index register X. Indirect indexed addressing combines

the advantage of an address that can point anywhere in memory with

the offset capability of the index register. It is a particularly powerful

method of accessing the nth element of a table, providing the start

address is stored in page zero.

22

DATA MODIFY INSTRUCTIONS

A small group of instructions are not associated with any particular

processor register. They are classified as read/modify/write

instructions. They all read data from a memory location or

accumulator, modify it in a particular way and store the modified data

back into memory or the accumulator. These instructions perform

four different data modifications, shift, rotate, increment and

decrement.

A shift instruction is one which takes the contents of the

accumulator or a memory location and shifts all bits one bit to the left

or right. An example is the LSR-Logical Right instruction, here the

daia in the accumulator or memory is moved one bit to the right, bit

is placed in the carry flag and bit seven set to zero. Similarly the

ASL-Arithmetic Shift Left instruction moves the data one bit to the

left, bit seven is stored in the carry flag and bit set to zero. Repeated

shifts in the same direction will eventually result in the entire byte

being set to zero. Herein lies the difference between a shift and a

rotate instruction. In a rotate instruction the contents of the carry flag

is stored in the bit emptied by the shift, thus no data is lost in a rotate

instruction. The ROL-Rotate Left instruction shifts the contents of the

accumulator or addressed memory left 1 bit with the cam/ stored in

bit and bit 7 stored in the carry flag. With ROR- Rotate Right instruction

the data is shifted right 1 bit with bit shifted into the carry and the

carry shifted into bit 7. The shift and rotate instructions have a unique

form of addressing, in addition to the normal forms, and is known as

accumulator mode addressing. It indicates that the instruction is to

operate on the accumulator rather than on a memory location.

Besides shift and rotate the contents of a memory location can be

incremented or decremented. INC-lncrement Memory by One adds

one to the contents of the addressed memory location. DEC-

Decrement Memory by One subtracts one in two's compliment form

from the contents of the addressed memory location. The main use of

increment and decrement is with counters such as table pointers.

23

INTERRUPTS AND INITIAUSATION

The processing of interrupts is important for the operation of the

VIC system. As seen in Section 4 all peripheral I/O is interrupt driven, a

knowledge of interrupts is thus required by anyone using the user

port or the other I /O. There are three input lines which can cause the

processor to halt on completion of the current instruction. On receipt

of one of these inputs the program counter is stored on the stack and

the processor causes the program to jump to an interrupt servicing

routine at an address pointed to by the contents of one of the interrupt

vectors. These three lines are Reset, Interrupt Request or IRQ, and

Non-Maskable Interrupt or NMI. All three lines can be used by external

devices attached to the VIC memory expansion port. Their function

can be controlled by the programmer thanks to the RAM vectored

address table which allows user written routines to replace the

system routines governing interrupts and reset.

The only way a programmer can change the sequence of operations

is to load a new address into the program counter. If this were true

then an external event could not effect the program sequence, unless

the program was written to periodically check for an input. Most

inputs are asynchronous, meaning that for an input to occur at the

same time as the program is checking for inputs is extremely unlikely.

If an input pulse occurred just after an input check, then not until the

next check would that pulse be input to the computer. During the

interval between checks; data at the input may have changed resulting

in the loss of information. To overcome such a data loss the processor

could be programmed to wait for the data, but this would mean the

processor spending most of its time doing nothing.

The problem of having the processor wait for an input is overcome

by having a special line signal the processor whenever an input

occurs, an interrupt. This considerably simplifies programming,

making it unnecessar/ to repeatedly use an input testing subroutine

or have the computer wait for an input. The two interrupt lines used to

signal to the processor that an input is present are the IRQ line and the

NMI line. By pulling an interrupt line low for at least 20 microseconds

an input device can signal that it wishes to send data to the processor.

This forces the processor to finish its current instruction, store the

program counter and status register on the stack and jump to a

memory location pointed to by the interrupt vector. There are two

interrupt vectors that for the IRQ line are located at 65,534 and 65,535,

24

for the NMI line at 65,530 and 65.531 . The reset vector is located at

65,532 and 65,533.

The processor could be interrupted before it was able to retrieve

data from an interrupt initiated input. To prevent this the programmer

can disable the IRQ line and prevent further interrupts by setting the I

flag in the processor status register. This is done by the first

instruction in the interrupt handling subroutine, SEI-Set Interrupt

Disable. A CLI — Clear Interrupt Disable instruction clears the I flag

and allows the processor to be interrupted as normal. Having

obtained data from the input the interrupt software can process it for

use by the main program or respond with an output from an I /O port.

Control is returned to the main program by the RTI-Return from

Interrupt instruction. This pulls the contents of the processor status

register and program counter off the stack restoring the processor to

its pre-interrupt state. The NMI line can not be disabled with

commands to the processor and will therefore always generate an

interrupt irrespective of the state of the IRQ line and the Status

register I flag. An interrupt on the NMI line therefore has a higher

priority than an input on the IRQ line. The Reset line takes priority over

both the interrupts causing all the system pointers to be reset and a

Basic warm start initiated. If the Reset RAM vector address is changed

then the user written reset routine which it points to must clear the

processor registers, and reset the stack pointer to the beginning of the

stack, before jumping to the entry point of the main program.

The VIC has two sources of interrupt, one from each of the

peripheral 1/0 chips and either one can interrupt the processor. The

interrupt line from one I/O chip (VIA No.2) is connected to the IRQ line

(a timer on this chip generates regular interrupts which control

update of the clock variable Tl and keyboard scanning). The interrupt

from the other I/O chip (VIA No.1) is connected to the NMI line and is

used to generate a system restart when the Restore key is pressed.

Each I/O chip has two interrupt inputs and one output connected to

the IRQ or NMI lines. The function of these I/O inputs is dealt with in

the sections on the 6522 VIA chip and the system I /O.

An interrupt sequence can be created by the programmer without

an input being present in the IRQ line, by use of the BRK — Break

command. This instruction performs a software interrupt and causes

program control to be transferred to the address stored in the

interrupt vector. The main use of this instruction is in debugging a

program, however, it calls one of the interrupt routines. Its use on the

25

VIC is not recommended. For VIC users a similar function is provided

in the machine code monitor with none of the attendant problems of

the BRK instruction.

26

MACHINE CODE ON THE VIC

The VIC has an advantage over many other small micro computer

systems in that it can be programed in both Basic and machine code,

this gives the programmer the powerful option of using machine code

subroutines in a Basic program. The VIC normally runs in the Basic

mode and there are six ways of accessing the machine code

environment. The first two use commands in Basic, these are, USR

and SYS. Both commands access a machine code subroutine whose

address is specified in the command or in a specific page zero

location. The next four methods involve adding machine code

subroutines into the operating system.

-| _ the Basic command USR(X) transfers program control to an

address stored in locations 1 and 2, this address is user definable and

will be the start of a machine code subroutine. The value X specified in

the command is a parameter for use by the subroutine, this is

evaluated and placed in floating accumulator No.1 starting at location

$0061. A parameter may be returned by placing it in the floating

accumulator and providing it is in the correct format then this value

will be assigned to the parameter variable.

2 _ the Basic command SYS(X) causes program control to jump to

a machine code subroutine starting at address location X, where X is

either a variable or a constant value equal to the decimal start

address. Parameters can be passed between the Basic program and

the machine code routine using POKE and PEEK commands to place

or read values from specified memory locations.

3 — jf the machine code routines are located in ROM memory and

start at memory address No.AOOO then the VIC allows system control

to jump to this location rather than the normal Basic interpreter when

the machine is switched on. This is very useful since it allows the user

to change the VIC system. This can be either adding extra commands

to Basic, changing the I/O operation using the ROM and RAM jump

vectors or simply bypassing the Basic and operating system software

and replacing it with special custom software (this is commonly done

for cartridge games).

4 — add a program into the interrupt servicing routines, these are

called sixty times a second by the keyboard scan interrupt signal. This

method for example allows the scanning of I/O ports for an input, or

selectively disabling certain keys on the keyboard. Any situation

27

where a program must be run concurrently with the main program

could use this method.

5 — involves inserting extra code into the CHARCOT subroutine

which gets each line of Basic from memory prior to its execution by

the interpreter. By intercepting each line of Basic before it is executed

new Basic instructions can be added. The instruction being

performed by a user written machine code subroutine. Both the

method of inserting code into the interrupt routine and the addition of

extra code into the CHARCOT subroutine will be dealt later with in

full.

6 — the RAM vector address table can be used to insert code into, or

replace, any one of the Basic or system routines accessible through

this table. This is similar to method 4 and could be used to reassign

the functions of the interrupt lines or change the peripheral I/O

handling routines.

The main reason for using machine code subroutines is that Basic is

too slow for many purposes, especially when using the I/O ports or in

special purpose display functions. A machine code routine is more

than 100 times faster than the same program written in Basic,

Another reason for using machine code is that one may want to

change the operating system or use some of the operating system

subroutines.

A machine code program which is loaded into RAM memory is best

located at the top of memory. This area is used by Basic to store

character strings, and to avoid these overwriting the machine code

program the top of memory pointers must be changed. The top of

memory pointers are set during power up diagnostics to the highest

usable RAM location. The location of the top of memory and therefore

the values stored in the top of memory pointer bytes depends on

whether the VIC is fitted with any extension RAM. By lowering the

value of these pointers a block of memory can be reserved exclusively

for use by a machine code program. The operating system will regard

the new top of memory pointers as containing the highest memon/

location usable by Basic. The pointer is stored as the low order byte in

51 and the high order byte in 52. As an example the following

commands will lower the top of memon/ to location 4096:

POKE 51,0 : POKE 52,16

POKE 55,0 : POKE 56,16

CLR

28

Locations 55 and 56 are the top of strings pointers and must be set

equal to the top of memory pointers at the start of the program, the

CLR command resets all the variable pointers thereby clearing all

vanables used previously in the program. Care should be taken when
locating machine code programs in RAM memory space that the

memory area used is not also allocated to either video memory or

character generator memory.

Of the two Basic commands used to call a machine code subroutine,

SYS and USR, by far the most powerful and flexible is SYS. With the

SYS command one simply specifies the subroutine starting location,

thus if it starts at location 5000 it can be called with SYS 5000.

Variables can be transferred between a Basic program and a machine

code program by using PEEK and POKE. These read or write single or

multiple byte values into memon/ locations allocated for the purpose

and accessed by both programs. Transferring variables in this manner

is easier than using the single floating point variable provided for the

USR function. It also allows the transfer of more than one variable

which USR does not. The only requirement with a SYS subroutine is

that the last instruction in the subroutine is a RTS — return from

subroutine, this automatically returns control to the Basic program.

The easiest way of entering a machine code program is to

incorporate it into the Basic program using a simple loader, on

running the program the loader POKES the values byte by byte into

the correct locations. Another way is to use the machine code monitor

which is part of the Programmers Aid ROM pack, a summary of all the

commands in the monitor are given in Appendix 6. The monitor

allows machine code program to be directly written into memory
using hexadecimal code. It also allows programs to be saved and

loaded onto tape in machine code format. To make the writing of

machine code programs easier and avoid the necessity of hand

encoding, a simple assembler and disassembler are included in the

monitor. The monitor saves a machine code program by saving the

block of memory where the program is located, far quicker than a

corresponding Basic loader.

The only drawback with using the monitor to save and load a

machine code program is that it will require a two part load, the first

to load the machine code and the second to load the Basic program

calling the machine code routine. The Basic program could be saved

by the monitor together with the machine code, by saving the entire

contents of user memory from location No. $0400 up. Generally it is

29

10 REM *******************************.*
20 REM *BfiSIi:: LOADER FOR MACHINE CODE
30 REM *ROUTIHE < EXAMPLE CODE OHLV.:-

40 REM **•***********************•******.*
100 DATA 204S- REM **CODE START LOCATION

REM **riACHINE CODE IN HEXADECIMAL103
110
120
130
140
150
9000
9005
9006
9010
9020
9030
9040
9050
9060
9070
9080
9090
9100
9110
9120
9130
9140

READV.

DATA
DATA
DATA
DATA
DATA

48..

A9j
A9..

A5..

68..

98..4S.. 8A.. 48
1 3 .. 20 .. D8 .. E3 .. A5 . 54 .. F0 .. ©9
1 1 .. 20 .. D8 .. E3 .. C6 .. 54 .. DO .. F7
55 .. F0 .. 09 .. A9 .. 1 D .. 20 .. D8
AA.. 68 ..AS ..68. 60

DATA*: REM **END OF CODE
REM **THE FOLLOWING LINES ARE THE BASIC
REM **LOADER PROGRAM.
READL
READA*
C=LEN<A*>
IFA$="*"THEN9140
IFC<1ORC>2THEN9130
A=ASC<A$>-48
E=ASC •;R IGHT$ <A* .. 1 > >-48
N=B+7* C B>9 y - (C=2) * < 1 6* < A+7* <A>9 > > >

IFN<0ORN>255THEN9 1 30
POKEL..N
L=L+1
GOTO9020
PR I NT "BVTE "

L
" = C "A* "] ????

"

END

30

best to use a Basic loader for short machine code programs which aire

called by the main Basic program. Longer machine code subroutines

and machine code programs which stand alone and are not called

from Basic are best saved using the monitor.

Another method of storing machine code programs is to store them

within a Basic program as REM statements. To do this the machine

code program must first be split into blocks, each block being less

than 80 bytes long. Each byte of the machine code routines is stored

as a character in the REM statements. The REM statements are stored

as the first few lines of the Basic program. Each statement is first filled

with dummy characters, the number of characters in each statement

depends on the length of the block of machine code to be stored in

that statement. The machine code monitor is then used to find each

REM statement as it is stored in memory and replace the dummy
characters with the code value for each byte in the machine code

block. When the program is listed the REM statements will appear as

a seemingly random collection of ASCII characters, each character

however represents a byte of the machine code routine. When writing

a machine code program to be stored in this way care should be taken

to ensure that no absolute jump addresses are used within a block,

this ensures that the routine is relocatable. Care should be taken to

ensure that jump addresses from the main calling routine are suitably

modified to allow for the six byte gaps in the program required for

storage of line number, link address, command token and terminating

0, and the location of each routine.

31

WRITING MACHINE CODE PROGRAMS

The prospect of writing a maclnine code program even a small one

may seem fairly daunting, but providing one uses an orderly and

disciplined approach to the problem it need not be difficult. A machine

code program differs from Basic in the approach taken to its writing.

Whereas a rough Basic program can be written and then polished up

by inserting and changing lines, a machine code program must be

written as the final version, any changes often necessitate rewriting

and assembling the whole program. Machine code unlike Basic code

is dependent on the exact position of instructions in memor/. Adding

a couple of instructions into the middle of a program means changing

most jump, branch and data addresses. Machine code programs also

require far greater attention to details like current flag status,

programs must be ven/ carefully planned before they are written.

Unless this is done, writing a machine code program will require far

greater effort than is necessan/ and the product far more prone to

error. It is strongly recommended that before writing any programs in

machine code yourself, you study some 6502 machine code routines,

try to determine why the code was written in a particular way and

what it does.

Stage one in planning a program is to define what the program is

required to do, then break the problem into a series of steps. To

demonstrate this consider the following example, to display all the

ASCII characters on the screen.

Set the screen location pointer LOC to start of screen, address

32768 — set the ASCII character value CHAR to zero — store character

code CHAR on screen at location LOC — increment LOC — increment

CHAR — if CHAR is greater than 255 then all characters have been

displayed and program ends, if not then go back and display next

CHAR.

From this description we have defined that two variables CHAR and

LOC are required, also the program structure requires a loop with a

conditional test. For a short program like this a written description is

not really required since one can easily remember what one wants the

program to do. For longer programs it is an essential part of the

process. From the written description one can construct a flow

diagram such as the example in Figure 5. The flow diagram can be

regarded as a pictorial version of the written description and as a

result simpler to follow.

32

c start D

CHAR-O

LOC -0

*(Stor« CHAR in LOC 7680
COLOUR in LOC + 38400

'
'

lncr«m«n t LOC

1

lncr*m«nt CHAR

Initial Vartion

Fig. 5 — Preliminary flow diagram for example routine.

33

For long programs the flow diagram and written description can get

very involved and confusing. It is good practice to split such a

program into a series of self contained blocks or subroutine modules.

Each module is then treated as a complete program, making program

writing and debugging easier. The flow diagram shows the logical

pathways through a program and most logical errors can usually be

detected at this stage, saving a considerable amount of progamming

time.

Having drawn a flow diagram the next stage is the construction of a

table of variables and locations of system subroutines called. In the

example no system subroutines are used but two variables are

required:

LOC — pointer to location in screen memory where character is to be

stored.

CHAR— Value for ASCI II character to be displayed on screen.

It is important that the table contains all variables required, since

when writing the program exactly the right amount of space in

memory must be left to contain them.

Having defined the logical flow of the program, the variables used

and any system subroutines called, a start can be made on writing the

program code. Probably the best way is first to draw an expanded

version of the flow diagram. Breaking down each logical step into a

series of substeps corresponding to a machine code instruction. In

Figure 6 notice that the variable LOC is now stored as the contents of

the X index register. Indexed addressing being the easiest way of

putting data into successive memory locations. Also the index

register (i.e. LOC) is loaded with 255 and decremented, rather than

and incremented as in the original flow diagram, since it is easier to

test for zero than for 255. It should be noted that the coding of this

example is not the optimum for either speed or compactness but

rather for clarity so that the purpose of each command is clearly

visible.

Having laid out the program in flow diagram form the next step is to

write the actual code which will be used by the machine. There are

three ways in which this can be done, the choice of which method is

used depends on equipment available and the size of the program.

The first method is to write the code by hand using a coding form

using the instruction mnemonic or operand address/value in the

opcode column, see Figure 7. Code written and assembled by hand

can best be entered into the VIC memory by a Basic loader program.

34

(Ditpliy
J

Load ace with 2SS

1

Store ace in CHAR

1

Load IndaxXRag with 2SS

Load ace with CHAR

, .N,a„,

,

Stora ace in 7680 X

3 in 38400, X

1

Dacramant CHAR

,

Dacramant Indax X

*' X = 07 ^^V^

S top J

Final Vartio

35

Fig. 6 — Expanded flow diagram for example routine.

The second method again involves writing the code in mnemonic and

label form by hand on a coding form, the assembler which is part of

the monitor on the VIC Programming Cartridge is used to assemble

the code and directly enter it into the VIC memon/. The third method

is best used for very long machine code programs and involves using

a PET computer system (a 32K minimum with disks and printer) on

which to write and develop the code. The code is written using the

editor program in the assembler package, this creates a source code

file on disk, the assembler uses this file during assembly to create an

opcode file on disk which can be loaded into memory using the loader

routine.

For hand assembly and coding of a program it is advisable to use a

coding form such as that shown in the example, it helps to

considerably reduce the number of errors occuring at this stage. On

the first page of the coding form should be written a list of all

variables, I/O locations and system subroutine entry points used.

Each variable being assigned the number of bytes of memory which it

will require. Most will be single byte but some will be two or three

byte precision and in the case of character variables or data buffers

memory required could be large. When storing a multiple byte

numerical variable it is good practice to store the bytes in fixed order,

with the least significant byte in the first location and the most

significant byte in the last location. It is easier this way to keep track of

which part of a variable is being dealt with. Also index registers can be

used to access successive bytes of a variable in the same order that

they are processed.

Program variables can be stored in any part of RAM memory not

occupied by either programs or system variables. For maximum

speed and reduced program size variables should be stored in page

zero of memory, the bottom 255 bytes. On the VIC page zero is

currently occupied by system variables. This area can be utilised if the

memory locations used are carefully chosen. If Basic is not used, then

the entire section of page zero used by the Basic interpreter for

variable storage (locations to 143) is available to the programmer.

The remaining part of page zero is used by the operating system and

may or may not be required by the machine code program. If both

Basic and machine code are to be used together in the same program

then the number of page zero locations available is limited (locations

36

DISPLAY

DATE _ K/t/n PAGE 1

A00
MSB

RESS
LS8 opcooe LABEL MNEMOMIC

AO
MODE OPERAND z N

LAGS
V CYCLE COMMENT

Qd 40 — cmas - VA<M61£ FBie ASCII CIU«ACTEK

I A9 prSPtAY AW # j2« Sr)l«T- SET Uf LMf CoaMT

2 FP ^ AMD umAcrtu mJit

3 ev SM A«S CWK INITIALISE 'CMAi'

4 40 ,-^

5 03 ,^
6 >(i iv-/ # ^f<- SET hW£* te« * iSS-

7 rf „^
8 AV NE-mm a>^ A« CuAt cer 'cuAH'

9 40 y^
A 03 ^
B 92) STA ««;($IE0O,X SToUE AT ST-Aer af V/na «t/»

C 00 ,-^ wiex

IE ,-^

E A<J iCBA l«l 03 srr cauiat. ' tea

F 03 ,^
50 <>D STA ««5,1(*?too,x Sro«E COiOU* /* CoteuC llA»

1 00 -^ AT JttOO, X

3 9i ,^
3 CE PEC Aas CHAi vur a/ekt xsch CHAtAoee

4 40 ^- in 'CHAlC

5 03 ,.^-

6 CA DEX IM^ JC Tbwr To w£<r soceew

7 7)0 BnE lee^ Ketremt LOCATiM - lAiT CHAKAOee ?

a £f ^
9 60 gTS IMf £a« */I> «£ro*' fia// SuSAttTME.

A

B

C

D

E

'

Fig. 7 - Hand coded program of example routine (note this is the simplest

though not necessarily the best way of writing this program)

.

37

87 to 96 are best). If a larger section of page zero memory is required

then the existing contents should be relocated to a protected part of

memory before the machine code routine is run and restored at the

end of the routine.

Using the second expanded flow diagram one can start writing the

code onto the coding form using the instruction mnemonics. The first

step is to enter the starting location of the program into the address

column, then enter the first instruction into the mnemonic column.

The addressing mode of the instruction should be entered into the

relevant column. This is important since one must be able to calculate

how many bytes are required by that instruction, to determine on

which line (i.e. at which address) the next instruction should be

entered. The label column will contain an entry only if that address is

the start of a subroutine or the destination of a jump or branch

instruction. On the flow diagram the position of labels is indicated

where an operation has more than one entry or exit point. The label

used can be any name but preferably one descriptive of the function of

the subroutine or loop. In the example the beginning of the program is

given the label DISPLAY and the entn/ point of the loop is called

NEXTCHAR. Entries in the operand column will only be required for

instructions referencing other locations in the program and will

consist of symbolic labels and variable names. As program code is

entered on the coding form the comment column should also be

completed. Either with simple references to the flow diagram or a

more complete description. At a later date the function and logical

flow of the program can thus be easily followed without relying on

memory.

If the machine code routine is to be called from a Basic program

with either a SYS or USR command then it is very important that the

contents of the processor registers are saved before the routine is

executed and then restored at the end of the routine. This is most

easily done using the stack. The first few instructions of the routine

push all registers onto the stack and the last instructions restore

register contents by pulling the correct values off the stack.

Once written, the program should be checked for logical errors,

before being assembled. It will involve less work if errors are detected

prior to assembly. Assembly of short to medium length programs is, in

the absence of a full assembler running on a PET, best done with the

38

spot assembler function of the nnonitor. Full details of the monitor

functions are given in Appendix 6. The process of hand assembling is

done, in the absence of a monitor, in two stages, the first consists of

using the instruction set list to obtain the opcode value for each

mnemonic with the specified addressing mode. This hexadecimal

value is entered into the opcode column of the coding form on the

same line as the mnemonic. If the addressing mode is other than

"implied" or "acumulator" then the following one or two bytes will

be used to store an address or a value specified in the operand

column. If the addressing mode is immediate, then the operand

column contains a hexadecimal value which is transferred to the

opcode column on the line following that of the instruction code.

The number system used must always be noted, the conventions

are that a number prefixed with a % is in binary format, with a $ in

hexadecimal format and if no prefix is given then in decimal format.

Convention also dictates that an instruction in the immediate mode is

identified by a No. sign in the address mode column, all other address

modes are just an abbreviation of the name. For all other modes the

symbol contained in the operand column will correspond to either a

label or variable. If a variable, then the address of the variable can be

obtained from the variable table on the first page of the coding form. If

the instruction is a jump or branch then the addressing mode used

will transfer program control to another section of the program, the

operand column will thus contain a label. Since a label needs the

calculation of a jump address it is left until the second part of the

assembly procedure. It should be noted that the 6502 requires that all

addresses are stored in the form "least significant byte" first, then

"most significant byte" thus address 0340 hexadecimal is stored as

4003.

At the end of the first stage of the assembly process, the opcode
column on the coding forms should contain a list of hexadecimal

values, one for each location in memory. The exceptions being jump
and branch addresses which are calculated in the second stage. Jump
addresses pose no problem since they are stored in either indirect or

more commonly absolute mode. Their entries in the opcode column
can be obtained from the address of the relevant label. The
conditional branch instructions all use relative addressing, where the

branch, either forward or backward, is calculated from the location of

the branch instruction rather than a fixed location in memory. It is the

offset from the current location, which can be up to 127 bytes away.

39

either forward or backward, which must be calculated by the

programmer. Great care should be taken with this, any error will

cause program control to be transferred to the wrong place, with

resultant errors or program crash. To calculate the value for a forward

branch one counts the number of bytes from the location of the

branch instruction, to the location of the label in the branch operand

column, and subtract 2 from this value. If the branch is backwards

then the offset is calculated by counting the number of bytes from the

branch instruction to the label, then adding 1 and subtracting from

255. The result when converted into hexadecimal can be stored in the

opcode column after the branch instruction.

Once all jump addresses have been calculated and a complete list of

opcode values obtained the program can be entered into the

computer. Before this is done it is advisable to recheck the program,

especially the opcode listing for errors (make sure that you can

distinguish between 8 and B or A and 4). The opcode listing is then

entered into the VIC using either a Basic loader or the machine code

monitor. Once entered, the program should be saved before it is run

since it is very rarely that a machine code program runs perfectly first

time. With the aid of the monitor the contents or memory should be

checked against the opcode listing for any program entn/ errors. If any

are found they should be corrected and the program resaved. One can

then try running it. If there is a program error it will probably crash the

machine, if so reload the program and the monitor and carefully

recheck the logic flow, the coding and the contents of memory. In my
experience the three most common causes of fatal program errors are

— entry errors, coding errors, and wrongly calculated jump and

branch addresses.

The best way of detecting errors is to systematically work through

the program inserting a break instruction at points where program

failure may have occurred. This will cause the program to return to the

monitor, allowing the contents of variable locations to be checked

and gradually isolate the fault to a small section of code. Another

way of isolating errors is to run the program from different locations,

though this does require a careful choice of entry points. Having

detected and removed any fatal errors one may find that the program

still does not run properly and produces strange results. Non fatal

errors are most commonly caused by either a mistake in the basic

logic flow, ignoring the current flag status, using the wrong variable,

and quite commonly using the wrong branch instruction.

40

Successful machine code programming is not difficult, it requires
just a strict adherance to a method and constant attention to detail

plus plenty of practice. The methods outlined above should enable
VIC users to expand their machine's capabilities by using machine
code subroutines.

41

LJJ

DC

<

LL
O
CO

44 - Vic Memory Map

47 — Vic System Variables

50 - Table of System Variables

60 - Vic User Memory

65 — Data Storage

71 - Basic and Operating System Software

73 - Table of System Subroutines

90 - User Callable Kernal Routines

LU
I—
CO
>
CO

o
>
CM

42

SFFFF
8K

KERNAL

ROM

$DFFF 8K

BASIC ROM

$BFFF

$7FFF

$5FFF

$3FFF

$1FFF

8K

EXPANSION
ROM /RAM

$9FFF

8K

EXPANSION
RAM/ ROM

8K

EXPANSION

RAM/ ROM

8K

EXPANSION
RAM/ROM

$0000

Expansion I/O 2

Expansion I/O 1

Colour RAM

6522 No1&No2

6561

CHARACTER
GENERATOR

ROM

$9C0O

$9800

$9600

$9100

$9000

SSFFF

$8000

Screen RAM
$1FFF

$1DFF

4K RAM

3K
$0FFF

EXPANSION
RAM

IK RAM
$03FF

$0000

Fig. 8 — VIC memory map.

43

VIC MEMORY MAP

The 6502 microprocessor used in the VIC is capable of accessing up

to 64K bytes of memory, this memory space is divided into blocks

having a specific function. On the basic VIC only 29K of the available

64K is utilised, the remainder is available for user expansion using

either ROM or RAM memory or even specialised I/O, all accessible

through the memory expansion connector at the rear of the machine.

The division of the memory space into blocks with different functions

is shown in Figure 8. An understanding of the function and location of

each block is essential if full use is to be made of the VIC.

1 _ System variables — Hex $0000 to $03FF — Decimal to 1 023

— The first 1024 bytes of RAM memory are utilised by Basic and the

operating system for the storage of system variables. The VIC system

configuration and/or its mode of operation can be changed by placing

values into specific locations in this section of memory.

2 _ User RAM memory — Hex $0400 to $7FFF — Decimal 1024 to

32767 — This 31 K block of addressable memory can be divided into

four sub sections the first of 7K length and the remaining three

sections of 8K length. The first sub section consists exclusively of

RAM memory it is made up from the VIC's built-in 4K user memory

which extends from location $1000 to $3FFF plus the standard 3K

expansion RAM which goes from location $0400 to $OFFF. If there is

no other RAM memory expansion then the top 512 bytes of the first

section of RAM memory $1 EOO to $1 EFFF are used as the screen memory

(if the High Res mode is used then in addition to the screen memory a

4K block of RAM is required for the programmable character

generator, see the section on the 6561 for details). If there is more than

7K of user RAM in the system then the screen memory is moved to

start at $1000, decimal 4096. The three 8K sections of user memon/

can be either RAM or ROM and are completely free for user programs

and data with the exception of the screen memory.

3 _ Character Generator — Hex $8000 to $8FFF — Decimal 32,768

to 36,863 — The character generator is a 4K ROM which contains the

pattern of dots used to display each of the 255 valid VIC ASCII

characters on the screen. The contents of the character generator will

depend on which language version of the VIC you possess, there are (at

the time of writing) three versions. The programmer does not need to

bother about the character generator in normal character display

44

mode. However, in High Resolution display mode the character

generator is not used and therefore to display alphanumeric

characters in this mode the data for the desired character must be
transfered from the character generator to the block of RAM used for

the user definable character generator.

4 — System I/O and Control Interfaces — Hex $9000 to $91 2F —
Decimal 36,864 to 37,1 67 — All the system input, output and control

lines are memory mapped, this means that an I/O line can be turned

on or off simply by changing the corresponding bit in a specific

memory location. The internal registers of three I/O chips are

accessable within this block of memory, they are two 6522 VIA chips

and the 5621 VIC chip, the latter controls the operation of the video

display. An understanding of the operation of these three chips is

essential if any of the many interfaces between the VIC and external

devices are to be used, consequently two complete sections of this

book are devoted to these devices.

5 — Colour Memory — Hex $9400 to $95FF — Decimal 37,888 to

38,399 — Each of the 506 bytes in this block of memory determines the

foreground and background colour of the corresponding byte in the

video memory. It should be noted that if there is more than 7K of user

RAM in the system then the colour memory starting address is moved
up to S9600, decimal 38,400.

6 — ROM Expansion Memory — Hex $A000 to $BFFF — Decimal

40,960 to 49,151 — This BK block of memory is designed for use by

programs stored in ROM and contained in a ROM/RAM pack plugged
into the VIC memory expansion port. The VIC operating system
allows a machine code program, starting at location SAOGO, to power
up directly into that program on switching on the machine, rather

than into Basic.

7 — VIC Basic Interpreter — Hex $C000 to SDFFF — Decimal 49,1 52
to 57,343 — The interpreter translates a high level Basic program, step

by step into a series of machine code routines, these perform the

function required for each Basic command.

8 — VIC Operating System Kernal — Hex $E000 to $FFFF —
Decimal 57,344 to 65,535 — The operating system controls the

functioning of the VIC system, such as initialisation on power up,

communication with peripheral devices, screen display and editing

45

etc. The operating system normally works in conjunction with the

Basic interpreter but the routines within it can be used by any

machine code program requiring the operating system functions.

46

VIC SYSTEM VARIABLES

The entire block of memory from location to 1023 is resen/ed for

use by the VIC system software, it is used to contain system variables,

temporary data storage, and input/output buffers. This memory area

is accessable to the user via PEEK and POKE commands in Basic, or

simple load and store commands in machine code (locations 256 to

511 contain the processor stack, this should not be accessed except

by processor stack commands in machine code). User accessability of

this area of memory is important since many interesting and useful

operations can only be performed by reading or changing the

contents of one or more locations within this bottom IK of memory.
The function of each location can be seen in Table 1, the programmer
should study this very carefully before attempting to use or modify

any of the variables. The memory area used by the VIC for variable

storage can be divided into seven distinct sections each with a

different function and used by a different part of the system software.

1 — Basic Interpreter Variables — Hex $0000 to $008F — Decimal

to 143 — This section of page zero is used exclusively by the Basic

interpreter and of the variables stored in this section and 1 6 two byte

pointers stored between location 43 and 74 are the most interesting. If

machine code subroutines are being used in a Basic program then

locations 87 to 96 can be used for page zero variable storage, if a

machine code program is being run which does not require the Basic

interpreter then the whole 143 bytes in this block may be used for

variable storage. If the USR command is used or any of the Basic

function routines are called from a machine code program then the

Floating Accumulators 97 — 112 will be required for transfers of

variables.

2 — Operating System Kernal Variables — Hex $90 to $FF —
Decimal 144 to 255 — All the variables and parameters stored in this

last section of page zero are of interest to the programmer. They
control the input and output functions of the yiC on the RS232 and

IEEE port, the allocation of files for I/O with peripheral devices, data

transfer between the VIC and the cassette deck, the control of the

screen editor, etc.

3 — Processor Stack— Hex $01 00 to $01 FF— Decimal 256 to 51 1
—

The section of memory occupied by the stack is common to all 6502
processor systems. The processor uses the stack as a last in first out

47

buffer to store temporary data, such as return arJclresses in subroutine

calls The operation of the stack is automatically controlled by the

processor and this area of memon/ should only be accessed with

extreme caution.

4 _ Basic Buffer — Hex $0200 to $0258 — Decimal 512 to 600 —
These 89 bytes are used to temporarily store text or program lines (a

hne IS four screen lines maximum length or 88 characters) dunng

input or output operations. When a program line is input it is

transferred from the Basic input buffer to memory by the terminating

carriage return. The line is then converted into the form in which it is

stored in memor/, all the commands are converted into tokens thus

reducing the memory space occupied by the program. This area of

memory should be accessed with extreme caution.

5 _ Operating System Kernal Vanables — Hex $0259 to $02FF —
Decimal 601 to 767 — These operating system parameters and

vanables do not require to be stored in page zero locations, they are a

continuation of the variables stored in page zero and deal with the

same functions. All locations in this section can be usefully accessed.

6 _ Indirect Addressing and Vectored Jumps — Hex $0300 to

$0334 _ Decimal 768 to 820 — This section of memory is used to store

indirect jump addresses for system functions and is thus of

considerable interest to the programmer. Some of the indirect

addresses are only temporarily stored here and are not of great use to

the programmer, 16 addresses are permanently stored here and they

relate to most of the major operating system functions. These

operating system vector addresses can be used to access the routines

or to intercept the routines and either insert some extra code or

replace the routine entirely. The programmer may want to intercept

or replace an operating system routine for a variety of reasons. By

inserting code into the interrupt routine which scans the keyboard

and updates the screen and clock 60 times a second the programmer

can, for example, get the VIC to automatically check the user port for

inputs. The programmer may wish to completely change the

operating system routines. If a non standard peripheral is connected

to the VIC then the input and output routines could be changed. The

use of vectored jump addresses increases the flexibility of the VIC

system and allows the user to re-define the system to fit a particular

situation.

48

7 — Cassette Buffer— Hex $033C to $03FC — Decimal 828 to 1 020— This 193 byte buffer is used in data transfers between the VIC and
the cassette deck to store each blocl< of data. If the cassette deck is not

being used then this section of mennory can be used to store small

machine code programs.

49

HtX DECIMA
$0000—$0002 0—2
$0003—$0004 3—4
$0005—-$0006 5—6
$0007 7

$0008 8

$0009 9

$000A 10

$0O0B 11

$0O0C 12

$000D 13

$000 E 14

$000 F 15

$0010 16

$0011 17

$0012 18

$0013 19

$0014--$0015 20—21

$0016 22

$0017--$0018 23—24
$0019--$0021 25—33
$0022--$0023 34—35
$0024--$0025 36—37
$002B--$002C 43—44
$002 D--$002 E 45—46
$002F--$0030 47—48
$0031--$0032 49—50
$0033--$0034 51—52

$0035—$0036 53—54
$0037—$0038 55-56
$0039—$003A 57—58
$003B—$003C 59—60
$003D—$003E 61—62
$003F—$0040 63—64
$0041—$0042 65—66

FUNCTION
USR function)ump

Convert float— > integer

Convert integer— > float

General counter for Basic. Search

character':' or endline

Scan between quotes flag, 00 as delinneter

Column position of cursor on line (0—87)

Verify flag

Basic input buffer pointer;^ subscripts

DIM flag. First character of array name
Variable flag, type: FF = string, 00 = numeric

Integer flag, type: 80 = integer, 00=floating

point

DATA scan flag; LIST quote flag;

memory flag

Subscript flag; FNxflag

Flags for input or read, = input,

64 = get, 1 = read

ATN sign flag: comparison evaluation flag

Current I/O device for prompt suppress

Basic integer address (for SYS, GOTO etc)

Temporan/ string descriptor stack pointer

Last temporary string vector

Stack of descriptors for temporary strings

Pointer for number transfer

Misc. number pointer

Pointer to start of Basic

Pointer to end of program start of variables

Pointer to end of variables start of arrays

Pointer to end of arrays

Pointer to start of active string space

(coming down)

Pointer to top of active strings

Pointer to end of memory
Current Basic line number

Previous Basic line number

Pointer to Basic statement (for CONT)

Line number, current DATA line

Pointer to current DATA item

50

$0U43—$0044 67—68
$0045—$0046 69—70
$0047-$0048 71—72
$0049—$004A 73—74
$0U4B—$004C 75—76

$004D 77

$004E—$004F 78—79

$0050--$0051 80—81

$0052 82

$0053 83

$0054--$0056 84—86
$0057--$005B 87—91
$005C--$0060 92—96
$0061--$0066 97—102
$0067 103

$0068 104
$0069--$006E 105—110
$006F 111

$0070 112

$0071--$0072 113—114
$0073--$008A 115—138

$008B--$008F 139—143
$0090 144

$0091 145

$0092 146

$0093 147

$0094 148

$0095 149

$0096 150

$0097 151

$0098 152

$0099 153

$009A 154

$009B 155

$009C 156

$009D 157

$009 E 158

Input vector

Current variable name
Current variable address

Variable pointer for FOR/NEXT
Y save register-new operator save;

current operator pointer

Special mask for current operator;

comparison symbol
Misc. work area; function definition

pointer hi-lo

Work area;pointerto string description

Length of above string

Constant used by garbage collect, 3 or 7
Jump vector for functions

Misc. numerical storage area

Misc. numberical storage area

Accumulator^ 1 : E, M, M, M, M, S
Series evaluation constant pointer

Accumulator high order propagation word
Accumulator^2
Sign comparison, primary vs. secondary
Low order rounding byte for Acc# 1

Cassette buffer length/series pointer

Subrtn: Get Basic char; 7A, 7B = pointer

(CHARCOT)
RND storage and work area

ST th I/O operation status flag

Stop key flag: Keyswitch pia.

Temporary
Load or verify flag

Cassette/IEEE load temp. IEEE buffered

char, flag

IEEE 488 buffered character

Cassette sync#
Temp for IEEE input

How many open files; pointer to file table

Input device#, normally

Output CMD device, normally default of 3

Tape character parity

Cassette dipole switch

OS message flag, direct = $50, run =
Cassette error pass 1 . Temporary

51

$009F 1 59

$00A0—$00A2 160—162
$00A3 163

$00A4 164

$00A5 165

$0UA6 166

$0OA7 167

$00A8 168

$00A9 169

$0OAA 170

$OOAB 171

$OOAC--$OOAD 172—1 73

$0OAE--$OOAF 174—175
$00B0 176

$00B1 177

$0082--$0083 178—179
$0084 180

$0085 181

$0086 182

$0087 183

$0088 184

$0089 185

$008A 186

$0088--$00BC 187—188
$008D 189

$008E 190

$00BF 191

$00C0 192

$00C1—$00C2 193-

$00C3—$00C4 195-

$00C5 197

$00C6 198

$00C7 199

$00C8 200

-194

-196

Cassette error pass 2. Temporary

Jiffy clock

Serial bit count

Cycle counter for serial I/O

Countdown for tape write; sync on tape

header

Cassette buffer pointer

RS-232 receiver input bit storage.

Tape shortcount

RS-232 receiver bit count in. Tape read

error

RS-232 receiver flag start bit check.

Tape reading zeros

RS-232 receiver byte buffer.

Tape read mode
RS-232 receiver parity storage. Tape

short count

Tape start address; tape buffer, scrolling

Tape end address/end of current program

Temporary

Temporary

Address of tape buffer.iiyi Y.

RS-232 transmitter bit count out

RS-232 transmitter next bit to be sent

RS-232 transmitter byte buffer

Length of current file name string

Current logical file number
Current secondary address, or

R/W command
Current device number
Address of current file name string

RS-232 write shift word/Receive

input character

#blocks remaining to read/write

Temporary

Cassette manual/controlled switch

Tape start address (load)

Temporary

Matrix co-ordinates of key down
#of characters in keyboard buffer

Reverse mode flag, = off, 1 8 = on

End of line for input pointer

52

$00F5—
6

$00F9—$OOFA

$00C9--$OOCA 201—202
$OOCB 203

$OOCC 204
$OOCD 205
$OOCE 206
$OOCF 207
$00D0 208
$00D1--$00D2 209—210

$00D3 211

$00D4 212
$00D5 213
$00D6 214
$00D7 215
$00D8 216
$0OD9—$00F1 217—241

$00F2 242
$00F3—$00F4 243—244
$00F5-$OOF6 245—246
$00F7—$00F8 247—248

$00F9—$00FA 249—250

$OOFB—$GOFF
$0100—$01 OA
$0100—$01 3E
$0100—$01 FF
$0200—$0258
$0259—$0262
$0263—$026C
$026D—$0276
$0277—$0280
$0281—$0282
$0283—$0284
$0285
$0286
$0287
$0288
$0289
$028A

251—255
256—266
256—318
256—51

1

512—600
601—610
61 1—620
621—630
632—640
641—642
643—644
645
646
647

648
649
650

Cursor log (row, column)

Shift mode on print flag, which key, 64
if No. key

Cursor blink enabled flag, = on, 1 = off

Delay before cursor blinks

Character before cursor

Cursor on/off blink flag

Input from screen/input from keyboard
Screen address (row) pointer

(screen memory)
Position of cursor on current text line

Quote mode flag, = off, 1 = on
Line length for screen (22, 44, 66, 88)

Current screen line number
Contain the ASCII value of last key press

Insert mode flag

Screen line table: hi order address and
line write

Temporary for line index

Screen editor colour IP

Keyscan table indirect

Pointer to RS—232 receive buffer base
location

Pointer to RS—232 transmitter buffer

base location

Free kernal zero page locations

Floating to ASCII work area

Taps error log

Processor stack area

Basic input buffer

Logical file number table

Device number table

Secondary address or R/W cmd, table

IRQ keyboard buffer

Start of memory
Top of memory
IEEE timeout flag

Active colour nibble

Original colour before cursor

Base location of screen (MSB)
Keyboard queue length

Repeat flag, = cursor control only

255 = all keys

53

$028B 651

$028C 652

$028D 653

$028E 654

$028F—$0290 655--656

$0291 657

$0292 658

$0293 659

$0294 660

$0295—$0296 661--662

$0297 663

$0298 664

$0299—$029A 665--666

$029B 667

$029C 668

$029D 669

$029E 670

$029F—$02A0 671--672

$02A1—$02FF 673--767

Delay before repeat occurs

Delay between repeats

Shift flag byte

Last shift pattern

Indirect for keyboard table setup

Shift nnode switch, = enabled, 1 = locked

Auto scroll down flag (0 = on,o = off)

6551 control register

6551 connmand register

Non standard (bit tinne/2-100)

RS-232 status register

Number of bits to send (fast response)

Baud rate full bit time

RS-232 receiver input buffer index to end

RS-232 receiver input buffer point to start

RS-232 transmitter output buffer index

to start

RS-232 transmitter output buffer index

to end

Holds IRQ during tape operation

Free

$0300—$0301
$0302—$0303
$0304—$0305
$0306—$0307
$0308—$0309
$030A—$030B
$030C
$030D
$030E
$030F

BASIC INDIRECTJUMP ADDRESSES
768—769 Indirect error routine

770—771 Indirect main command handler

772—773 Indirect tokenisation routine

774—775 Indirect character list routine

776—777 Indirect character dispatch

778—779 Indirect symbol evaluation

780 Temporary storage during SYS of .A

781 Temporary storage during SYS of .X

782 Temporary storage during SYS of .Y

783 Temporary storage during SYS of .F

54

KERNAL VECTOR ADDRESSES

$0j14—$0315
$0316—$0317
$0318—$0319
$031A—$03 IB
$03 1C—$03 ID
$031 F—$03 IF
$0320—$0321
$0322—$0323
$0324—$0325
$0326—$0327
$0328—$0329
$032A—$032 B
$032C—$032D
$0321—$032 F

$0330—$0331
$0332— $0333
$033C—$03FC

788—789 IRQ RAM vector

790—791 BRK instruction RAM vector

792—793 NMI RAM vector

794—795 Open logical file

796—797 Close logical file

798—799 Set input device

800—80

1

Set output device

802—803 Reset default I/O

804—805 Input fronn device

806—807 Output to device

808—809 Test STOP key

81 0—81

1

Get from keyboard

812—813 Close all files

814—815 Basic USR command vector

8 1
6—8 1 7 Load from device

818—819 Save to device

828—1020 Cassette buffer

0400—OFFF 1024-^095 3K expansion RAM area

1000— 1 0FF 4096—7679 User Basic area

1 EOO— 1 FFF 7680—81 91 Screen memory
2000—3FFF 81 92—1 6383 8K expansion RAM/ROM block 1

4000—5FFF 1 6384—24575 8K expansion RAM/ROM block 2

6000—7FFF 24576—32767 8K expansion RAM/ROM block 3

NOTE: When additional memory is added to block 1 (and 2 and 3), the

KERNAL relocates the following things for BASIC;

1 000—1 1 FF 4096—4607 Screen memory
1200—? 4608—? User Basic area

9400—95FF 37888—38399 Colour RAM

8000—8FFF
8000—83FF
8400—87FF
8C00—8FFF

32768—36863 4K Character generator ROM
32768—33791 Upper case and graphics

33792—3381 5 Reversed upper case and graphics

35840—36863 Reversed upper and lower case

55

9000—93FF 36864—37877 I/O BLOCK

9000—900F 36864--35879 Address of VIC chip registers

9000 36864 bits 0—6 horizontal centering

bit 7 sets interlace scan

9001 36865 vertical centering

9002 36866 bits 0—6 set No. of colunnns

bit 7 is part of video matrix address

9003 36867 bits 1—6 set No. of rows

bit sets 8x8 or 1 6x8 chars

9004 36868 TV raster beam line

9005 36869 bits 0—3 start of character memory
(default=)

bits 4—7 is rest of video address

(default=F)

BITS3,2,1,0 CM starting address

HEX DEC

9006
9007
9008
9009
900A

9008

900C

900D
900E

0000 ROM 8000 32768

0001 8400 33792

0010 8800 34816

001

1

8C00 35840

1000 RAM 0000 0000

1001 xxxx

1010 xxxx unavail

1011 xxxx

1100 1000 4096

1101 1400 5120

1110 1800 6144

1111 1C00 7168

36870 horizontal position of light pen

3687

1

vertical position of light pen

36872 Digitized value of paddle X

36873 Digitized value of paddle Y

36874 Frequency for oscillator 1 (low)

(on: 128—255)

36875 Frequency for oscillator 2 (medium)

(on: 128—255)

36876 Frequency for oscillator 3 (high)

(on: 128—255)

36877 Frequency of noise source

36878 bit 0—3 sets volume of all sound

bits 4—7 are auxilary colour information

56

900F 36879 Screen and border colour register

bits 4—7 select background colour

bits —2 select border colour

bit 3 selects inverted or normal

mode
6522 PIA No. 1

Port B output register

(user port and RS232 lines)

DESCRIPTION EIA ABV

Received data

Request to Send
Data terminal ready

Ring indicator

Received line signal

Unassigned

Clear to send

Data set ready

Interrupt for Sin

Transmitted data

Protective ground

Signal ground

Port A output register

(PAO)BitO=SerialCLKIN

(PA1)Bit1=SerialDATAIN
(PA2)Bit2=JoyO
(PA3)Bit3=Joy1
(PA4)Bit4=Joy2
{PA5) Bit 5=Light pen/Fire button

(PA6) Bit 6=Cassette switch sense
(PA7)Bit7=SerialATNout

9112 37138 Data direction register B
9113 37139 Data direction register A
9114 37140 Timer 1 low byte

9115 37141 Timer 1 high byte 6 counter

9116 37142 Timer 1 low byte

9117 37143 Timer 1 high byte

9118 37144 Timer 2 low byte

9119 37145 Timer 2 high byte

911A 37146 Shift register

9110—91 FF 37136—37151
9110 37136

PIN 6522
ID ID

C PB)

D PBI

E PB2
F PB3
H PB4
J PB5
K PB6
L PB7
B CB1
M CB2
A GND
N GND

9111 37137

(BB) Sin

(CA) RTS
(CD) DTR
(CE) Rl

(CF) DCD
() XXX
(CB) CTS
(CO DSR
(BB) Sin

(BA) Sout

(AA) GND
(AB) GND

57

911D 37149
911E 37150
911F 37151

9120—912F 37152-

9120 37152

91 IB 37147 Auxiliary control register

91 1C 37148 Peripheral control register

(CA1.CA2.CB1.CB2)
CA1 = restore key (Bit 0)

CA2 = cassette motor control

(Bits 1-3)

CB1 = interrupt signal for received

RS232data(Bit4)

CB2 = transnnitted RS232 data

(Bits 5-7)

Interrupt flag register

Interrupt enable register

Port A (Sense cassette switch)

-37167 6522PIAN0.2
Port B output register

keyboard colunnn scan

(PB3) Bit 3 = cassette write line

(PB7)Bit7 = Joy3
9121 37153 Port A output register

keyboard row scan

9122 37154 Data direction register B

9123 37155 Data direction register A
9124 37156 Timer 1 . low byte latch

9125 37157 Timer 1 . high byte latch

9126 37158 Timer 1 . low byte counter

9127 37159 Timer 1 . high byte counter

timer 1 is used for the 60 time/

second interrupt

9128 37160 Timer 2. low byte latch

9129 37161 Timer2. high byte latch

912A 37162 Shift register

912B 37163 Auxiliary control register

912C 37164 Peripheral control register

CA1 Cassette read line (Bit 0)

CA2 Serial clock out (Bits 1 -3)

CB1SerialSRQIN(Bit4)
CB2 Serial data out (Bits 5-7)

912D 37165 Interrupt flag register

912D 37166 Interrupt enable register

912F 37167 Port A output register

9400—95FF 37888—38399 Location of COLOUR RAM with

additional RAM at bik 1

58

9600—97FF 38400—38911 Normal location of COLOUR RAM
9800—9BFF 38912—39935 I/O block 2

9C00—9FFF 39936—40959 I/O block 3

AOOO—BFFF 40960—491 52 8K decoded block for expansion ROM
COOO—DFFF 49152—57343 SKBasic ROM
EOOO—FFFF 57344—65535 8KKernalR0M

59

VIC USER MEMORY

The amount of memorv available to the user depends on whether

any RAM expansion cards are attached to the VIC, it will vary between

3K on a standard VIC to 31 K on a fully expanded system. This memon/

space is however not completely available for program storage being

also required for the storage of string and numeric variables and the

screen memory. It is no use writing a program 3K long and trying to

run it on a standard VIC as this will just result in the operating system

giving an out of memory error. The Basic program is stored from

location 4097 upwards (if the 3K RAM expansion card is fitted then

programs start at location 1025) and the string and variables are

stored from top of memory downwards.

Program Storage

When a program line is entered on the keyboard it is first written

into the keyboard buffer. The operating system then transfers it byte

by byte as it is entered onto the screen. The line however is not

entered into memory until a carriage return is pressed. This causes

the operating system to transfer the program line just entered from

the screen into memory via the Basic buffer where the line of code is

compressed and formatted. Each line is stored in a specific format

using a compressed version of the Basic text. This reduces the

memory requirements of a program and allows longer programs to be

run. The compression of Basic text involves conversion of the Basic

commands into single byte tokens. The command PRINT instead of

being stored as five ASCII characters is stored in a single byte as the

decimal value 153. When a program is listed the text compression

process is reversed, as far as the user is concerned the program is

stored in the same form as it was written.

A useful result of text compression is a shorthand way of writing

Basic commands either in a program or direct command mode. This

relies on the fact that the routine which converts commands to tokens

looks only at the first two or three characters of a command word.

Other characters in the command word are there for the users

convenience only. Normally if we entered only the first couple of

characters of a command the computer would respond with an error

message. This can be done by using a simple method of fooling the

error detection routines. Enter any Basic reserved word, type the first

letter of the word, then depress the shift key and type the second

letter. By using just the first two letters there could be confusion

60

VIC-20 BASIC Keyword Codes

Code Character/ Code Character/ Code Character/ Code Character/

(decimal) Keyword (decimal) Keyword (decimal Keyword (decimal) Keyword

End of line 66 B 133 INPUT 169 STEP

1-31 Unused 67 c 134 DIM 170 -t-

32 space 68 D 135 READ 171 —
33 1 69 E 136 LET 172

34 70 F 137 GOTO 173 /

35 * 71 G 138 RUN 174 T

36 $ 72 H 139 IF 175 AND
37 % 73 1 140 RESTORE 176 OR
38 & 74 J 141 G0SU8 177 >
39 75 K 142 RETURN 178 =

40 (76 L 143 REM 179 <
41) 77 M 144 STOP 180 SGN
42 78 N 145 ON 181 INT

43 + 79 O 146 WAIT 182 ABS

44 80 P 147 LOAD 183 USR

45 — 81 148 SAVE 184 FRE

46 82 R 149 VERIFY 185 POS

47 / 83 S 150 DEF 186 SQR
48 84 T 151 POKE 187 RND
49 1,- 85 U 152 PRINT # 188 LOG

50 2. 86 V 153 PRINT IfK EXP

51 3 87 w 154 CONT 190 COS
52 4 88 X 155 LIST 191 SIN

53 5. 89 Y 156 CLR 192 TAN

54 6 90 z 157 CMD 193 ATN

55 7 91 [
158- SYS 194 PEEK

56 8 92 X 159 OPEN 195 LEN

57 9 93 1 160 CLOSE 196 STR$

58 94 T 161 GET 197 VAL

59 95 .- 162 NEW 198 ASC

60 < 96-127 Unused 163 TAB(199 CHR$ „

61 = 128 END 164 TO 200 LEFTS

62 > 129 FOR 165 FN 201 RIGHTSS

63 7 130 NEXT 166 SPC(202 MID$

64 131 DATA 167 THEN 203-254 Unused

65 A 132 INPUT 168 NOT 255 T!

Note that the left parenthesis is stored as part of the one-byte token

for functions TAB and SPC, however, the other functions use a

separate byte for this synnbol. For exannple, the line:

10 IF INT(A) <5THEN PRINT TAB(X)

would be coded as the following bytes (in decinnal):

Link 10 139 32 181 40 65 41 179 53 32 167 32 153 32 163 88 41

\^ 1 (A) < b 1 1 1 X)

Nlimt)er IF INT ^"HEN F'RIN'r TAB(

61

between commands which share the first two letters, as in the STOP
and STEP. In these cases the first two letters should be typed followed

by the third with the shift key depressed. Table 2 is a list of Basic

commands and their abbreviated form with the numerical value of the

command token in both decimal and hexadecimal.

The token value given to a Basic command is a pointer into a table of

reserved command words located between 49310 and 49566. By
subtracting 127 from the token value the number of the word in that

table can be obtained. It should be noted that the technique of using

tokens to represent words can give the programmer a very powerful

method of generating print statements without consuming a large

amount of memory. This can prove especially useful in games
programs, such as Adventure, which require a lot of text generation. A
table of, say, 200 common words is constructed and each time one of

these words appears in a print statement it is represented by a

number pointing to its location in the table. Obviously some sort of

output subroutine is required to convert the token back into a word

but the saving in memory space can be considerable, especially if

done using machine code routines.

Having converted the Basic command into a single byte token the

line is stored together with the line number and a link address at a

location just above that of the last line entered. Assuming it is the first

line of a program being entered on a standard VIC, then it will be

entered into the following locations using the following format.

4096— contents

4097— link address low

points to starting

location of next line

4098— link address high '

4099— line number low

41 00— line number high

41 01 — start of compressed Basic text.

Number of bytes occupied variable.

End of line flagged by a zero byte.

A Basic program is stored as a series of blocks each of variable

length and representing one line in the program. Each block having a

fixed format and all blocks being connected via a linked list structure.

Each line in a program is stored in memory in the correct position

dictated by the magnitude of its line number, thus it will be the line

62

Start 1025

Link

address
Line

No.
Text

Link

address

Line

No.
Text

Link

address

Line

No.
Text

- END

Fig. 9 — How a Basic program is stored in memory.

63

with the lowest number which is stored at the bottom of memory —
location 4097 up. The line number is stored in byte 3 and 4 of a blocic in

binary format. This means that the largest line number that can be

used in a program is 65535, any number above that will give a syntax

error. When a program is run the current line number being executed

is stored in locations 57 and 58. A direct mode of operation for the

processor is indicated when the contents of these two bytes is zero.

The double byte linl< address points to the starting byte of the next
line. As each line is executed this address is stored in locations 122
and 123, where it is accessed when the operating system fetches the
next line. The link address of the last line of a program points not to

another link address as in a normal program line, but to two bytes the
contents of which are zero. The storage of a program within memory
is best illustrated by the diagram in Figure 9.

A knowledge of how a program is stored in memory is useful,

enabling several operations not otherwise allowed by the system to

be performed; line renumbering, program margins and overlays. Line

numbers can be changed simply by changing the contents of bytes
three and four of each block (line). The beginning of each line is

located using the link address obtained from the previous line. It

should be noted however that this will not renumber any of the jump
addresses stored in the Basic text. To do this the program must
examine the tokens used in the Basic text area, looking for GOTO or

GOSUB commands and renumber their jump addresses. Whereas the

line number is stored in a binary format the jump line number is stored
in ASCII and is thus of variable length.

64

DATASTORAGE

The entire area of memory not used for program storage is available
for storage of data. Firstly, it is worth looking at the simplest form of
data storage — using data statements. A data statement is stored as
part of a program in the Basic text area of memory. The data is

accessed by the program using the READ command. Data stored in
data statements can only be added to by adding program lines
Another limitation is that data can only be accessed from data
statements in a serial mode, meaning that to find one particular item
the whole table of data must be read. The pointer to the current data
statement is stored in locations 65 and 66 and the data line in 63 and
64. Manipulation of the contents of these locations could provide the
user with a means of overcoming the serial search limitation.

Data not stored within the program as data statements, is stored by
the program in the area of memory above the Basic text area, as
variables. Variables can be divided into two groups. Simple variables
of the kind used in the following statement; LET X = 47 where X is a
simple variable. Array variables are defined by a DIM statement and
contain more than one value. The number of values is determined by
the number of elements in the DIM statement. For both groups of
variables there are three types of data — real or floating point
numbers — integer numbers — and character or string variables
(where words are being stored rather than numbers).

Simple variables of whatever data type are stored immediately
above the Basic program text area, at an address pointed to by the
contents of locations 45 and 46. The amount of memory used to store
these vanables depends on the number of variables used by a
program. Each variable occupies seven bytes of memory and the next
free location in the simple variable storage area is pointed to by the
contents of locations 47 and 48.

The array variables are stored above the simple variables and thus
start from the location pointed to by 47 and 48. The amount of
memory used to store the array variables depends on the number of
array variables, the number of elements in each and the data type of
each variable. The end of the storage area used for array variables
which IS also the beginning of the unused storage area of memory is

pointed to by locations 49 and 50. Since array variables are stored
directly above simple variables, whenever a new simple variable is

encountered in a program, the operating system shifts the entire

65

INTEGER VARIABLES

first second

character in variable

nanne (the ASCII

value + 128)

high low

order byte of binary

representation of

integer value

FLOATING POINT VARIABLE

\

first second

character in variable

name

, , ,

binary mantissa in packed

BCD giving eight digit

precision. First bit of first

byte is sign bit.

binary

exponent

+ 129

STRING VARIABLES

first second
character in variable

name, 128 added to

ASCII value of second

character only.

number
of

characters

low high

order byte of

address where
string is stored

Fig. 10 — The storage of Basic variables in memory.

66

array variable storage area up seven bytes in memory thereby
opening up a space to accommodate the new variable. This dynamic
re-allocation of data storage space is one of the reasons why a
machine code subroutine can not be stored in unused memory space,
unless placed above the address stored in the top of memory pointers
in locations 55 and 56. The re-allocation of memory space slows down
a program, every time a new variable is encountered processing stops
while the data is moved. When processing speed is important, such as
in real time applications, this rather inconsistent variation in speed
can be a problem. It is overcome by initialising all the variables —
using dummy constants if necessary - at the beginning of the
program.

Single value variables are divided into three distinct data types,
each being stored in a different format. The only thing all three have in

common is that each variable stored requires seven bytes of memory.
Both integer and floating point numbers stored as single value
variables have both the name and the value stored within the seven
bytes allocated to each variable. An integer variable is distinguished
from a floating point variable by adding 128 to the ASCII value of the
variable name. The formats used are shown in FigurelO. From this, one
can see that there is no saving in memory usage by using single value
integer variable instead of floating point variables.

When the data being stored consists of a string of alphanumeric
characters then the variable is stored using the character format. In

this format the data is not stored within the seven bytes allocated for

variable storage. What is stored is a pointer to an address in mennory
where this string of characters is stored. Character strings are in fact

stored in an area right at the top of memory and extending
downwards towards the area occupied by the array variables. By
using this method string variables need not be of a fixed length
thereby considerably reducing the amount of memory needed to

store them. The format used for a string variable is shown in FigurelO.

Since the number of characters in the string is stored as a single

byte it is not possible to have a character string longer that 255
characters. This should be considered when adding two string

variables together where both are fairly long. Though the area at the
top of memory is allocated for the storage of strings, not all string

variables are stored there. Thus all strings defined within the program
are retrieved, when required from the program text area. This is done

67

Array

header

Element

No.

Element

No.1

Element

No. 2

Element

No. N

first second

characters in

array name,

plus data type

coding if any

low high

pointer to first

byte of next

array

number
of

dimens-

ions in

array

high low

number of

elements in the

last specified

dimension of

the array

expansion

bytes

FLOATING POINT ARRAY ELEMENT

binary

exponent

plus 129

binary mantissa, first byte bit 7

is used to indicate the sign.

INTEGER ARRAY ELEMENT

high low

order byte of binary

integer value

CHARACTER ARRAY ELEMENT

number low high

of byte of address

characters where string is

in string stored

Fig. 1 1 — The storage of Basic array variables in memory.

68

by having the variable address pointers point to the location in Basic

text rather than the top of memory. What is stored at the top of

memory are calculated string variables. The area of memory occupied

by these strings can be determined by looking at the contents of

locations 51 and 52 this is the start ^aiM•ess of the string area, and 53
and 54 which is the end address.

The three data types encountered as simple single value variables

can also be stored as multiple value or array variables. Whereas
simple variables of whatever data type all occupy the same amount of

memory for each variable, the memory requirement for an array is

different for each type of data. An array is stored as; an array header
plus a set of elements each roughly corresponding to a simple
variable. The array header contains the array name, the number of

dimensions in the array, the number of elements in each dimension
together with a pointer to the start of the next array. Array headers
are the same for all data types. As with simple variables the array data

type is coded into the array name. In a floating point array both
characters are the normal ASCII code. In an integer array 128 is added
to the ASCII value of both characters, and in a character array 128 is

added to the ASCII value of the second character only. The general
format of an array is shown in Figure 11. Here N is used to designate the

last element in an array and corresponds to the value used in the DIM
statement at the beginning of the program when the array was
initialised. The array header for whatever data type has the format
shown in Figurell,

In a one dimensional array the array header occupies seven bytes,

but if two dimensions are specified then an extra two bytes are

required to specify the number of elements in that dimension, making
the header nine bytes long. Similarly if there are three dimensions it

would be eleven bytes long. In a two dimensional array set up by DIM
D(A, B) the number of elements in B is stored in bytes 6 and 7 of the

header, the number of elements in A is stored in bytes 8 and 9. The
format for each element in an array is identical since all elements are

of the same data type, though the format is different for each data

type, these are shown in Figure 1 1.

NOTE: a negative integer whether in an array or a simple variable is

stored as a two's complement number, thus a negative integer

cannot exceed 32768.

69

Programs involving extensive string manipulation can suffer from

seemingly inexplicable and often lengthy pauses in their operation.

This is caused by an operating system function known as garbage

collection. Every time a character string is input, or calculated, it is

stored at the bottom of the character string storage area in a string.

To avoid running out of memory the system must perform at this

point a "garbage collection" routine. Garbage collection reclaims all

the unused memory and compacts the string storage at the top of

memory. This subroutine which is located at $D526 is lengthy and

time consuming especially in large programs and is the main reason

why such programs run at a much slower rate than small programs.

One can force garbage collection to take place by performing the

command FRE (U) which calculates the amount of free memon/ space.

This is useful if you don't want a real time program interrupted by the

garbage collection process. Generally the more user memory there is

available in the system, coupled with extensive string manipulation in

a program, the longer the delays caused by garbage collection.

70

THE BASIC AND OPERATING SYSTEM SOFTWARE

The top 16K of memory is occupied by the system software, these
are the programs which allow the VIC to be programmed in Basic, to

display and input data, and communicate with peripheral devices.

This 16K of machine code programs is very important since it defines

the VIC as a system, the VIC hardware is very flexible and by changing
the system software the VIC could become a totally different machine.
There is nothing to stop the user from completely re-defining the VIC
interfaces to conform to say Centronics standard rather than RS232, it

just requires a change in the operating system software. Similarly the

VIC could be converted to run any high level language instead of Basic

simply be replacing the Basic interpreter software. This flexability is

an extremely valuable feature of the VIC since it allows the
programmer to re-define the system to suit a particular application.

The 16K of system software can be divided into two distinct

sections, the Basic interpreter and the operating system kernal. Each
of these two sections are approximately the same length and each is

contained on its own 8K ROM. The Basic interpreter ROM lies in

memory space from address hex $0000 to $DFFF, the operating

system kernal ROM lies from address hex $E000 to $FFFF. The
operating system kernal is a totally self contained program and does
not need the Basic interpreter program to function. The Basic

interpreter however, uses the operating system routines to perform
all I/O and peripheral communications functions. Both Basic and the

operating system transfer variables between their constituent

routines and between the two programs using the RAM space
allocated to variables at the bottom of memory and processor registers

are also used.

In Basic most of the calculations are performed using floating point

numbers rather than simple integers or binary values. Consequently
most of the routines which perform these functions utilise one or both
of the floating point accumulators, both are located in page zero

memory, they have the following format and location:

Location

Function

Exponent + $80
Fraction MSB (binary)

Fraction byte 2

Fraction byte 3

71

Ace No. 1 Ace No.

$61 $69
$62 $6A
$63 $6B
$64 $6C

$65 $6D Fraction LSB

$66 $6E Sign(FF =— andO=+)

$6F Sign comparison byte

$70 Rounding byte for Ace No. 1

The majority of routines within both Basic and the operating

system can be accessed and used by other machine code programs

requiring that function, this can greatly reduce the amount of code

required. To use these routines one needs to l<now the entry point and

the nature, location and format of any parameters passed between

the routine and the calling program. The designers of the VIC have

made it fairly easy to use 36 of the most useful routines in the

operating system kernal. by making them accessible through a jump

table. Other routines in the kernal and Basic are less easy to use,

particularly in Basic since this software originated outside

Commodore (it was originally written by Microsoft but ammended by

Commodore). All the major system software entry points are listed in

Table 3 together with a short description of the function of each

routine. The following is a description of the most useful of these

routines, how their parameters are passed and how they can be used

from a user written machine code program.

$C43A— Error Message Handling Routine

Communication registers: message No. is in X reg.

Description; This routine outputs an error message from the table

of error messages, the message number is contained in the X index

register. The error message is output to the currently open output

device (default to screen). This is a useful way of generating error

messages in a user program though one is limited to the standard set

of messages.

$C483— Main Command Handling Routine.

Description; This routine handles a new Basic line input from the

keyboard and either executes it in the direct mode or stores it in

indirect mode. This routing will be required by the programmer when

adding extra commands to Basic.

$C560— Input and Place in Basic Buffer.

Communication registers; 89 byte Basic buffer locations $0200 to

$0258

72

NAME FUNCTION
COOO—C045 Action addresses for primary l<eywords

C046—C073 Action add resses for fu notions

C074—C091 Hierarchy and action addresses for operators
C092—CI 92 Table of Basic keywords
CI 93—C2A9 Basic messages, mostly error messages
C38A—C3B7 Search stack for FOR or GOSUB activity

C3B8—C3FA Open up space in memory
C3FB—C407 Test: stack too deep?
C408—C434 Check available memory
C435 Send canned error message, then

:

C474—C482 Print Ready
C483—C532 Handle new Basic line from keyboard
C533—C55F Rebuild chaining of Basic lines in memory
C560—C57B Receive line from keyboard
C57C—C61 2 Change keywords to Basic tokens
C61 3—C641 Search Basic for a given Basic line number
C642 Perform NEW, then:

C660—C68D Perform CLR
C68E—C69B Reset Basic execution to start-of-program

C69C—C741 Perform LIST

C742—C7EC Perform FOR
C7ED—C81 G Execute Basic statement
C81D—C82B Perform Restore

C82C—C856 Perform STOP and END
C857—C870 Perform CONT
C871—C882 Perform RUN
C883—C89F Perform GOSUB
C8A0—C8D1 Perform GOTO
C8D2—C8EA Perform RETURN, and perhaps:

C8EB—C905 Perform DATA, i.e., skip rest of statement
C906—C908 Scan for next Basic statement
C909—C927 Scan for nextBasic line

C928—C93A Perform IF, and perhaps:

C93B—C94A Perform REM, i.e., skip rest of line

C94B—C96A Perform ON
C96B—C9A4 Get fixed-point number from Basic

C9A5—CA1 C Perform LET

73

D11D—D193

CA1D—CA2B Add ASCII digit to accumulator No. 1

.

CA2C—CA7F Continue to perfornn LET

CA80—CA85 Perform PRINT #
CA86—CA99 Perform CMD
CA9A—CB1D Perform Print

CB1 E—CB3A Print string from memory
CB3B—CB4C Print single format character (space, cursor-right,?)

CB4D—CB7A Handle bad input data

CB7B—CBA4 Perform GET
CBA5—CBBE Perform INPUT No.

CBBF—CBF8 Perform INPUT

CBF9—CC05 Prompt and receive input

CC06—CCFB Perform READ; common routines used by

INPUT and GET
CCFC—CD1

D

Messages: EXTRA IGNORED, REDO FROM START

CD1 E—CD77 Perform NEXT
CD78—CD9D Check data type, print TYPE MISMATCH
CD9E—CEFO Input & evaluate any expression (numeric or string)

CEF1—CEF6 Evaluate expression within parentheses (

)

CEF7—CEF9 Check right parenthesis

)

CEFA—CEFC Check left parenthesis (

CEFD—CF07 Check for comma
CF08—CFOC Print SYNTAX ERROR and exit

CFOD—CF13 Set up function for future evaluation

CF1 4—CFA6 Search for variable name
CFA7—CFE5 Identify and set up function references

CFE6—CFE8 Perform OR
CFE9—D015 Perform AND
D01 6—D07D Perform comparisons, string or numeric

D07E—D08A Perform DIM
D08B—D1 1

2

Search for variable location in memory
D1 13—D1 1C Check if ASCII character is alphabetic

D 1 1
D—D 1 93 Create new Basic variable

D1 94—D1 A4 Array pointer subroutine

D1A5—D1A9 32768 in floating binary

D1 AA—D1 DO Evaluate expression for positive integer

D1D1—D34B Find or create array

D34C—D37C Compute array subscript size

D37D—D390 Perform FRE then

:

D391—D39D Convert fixed point to floating point

D39E—D3A5 Perform POS
D3A6—D3B2 Check if direct command, print ILLEGAL DIRECT

74

D3B3—D3E0 Perform DEF
D3E1—D3F3 Check FNx syntax

D3F4—D464 Evaluate FNx
D465—D474 Perform STR$
D475—D486 Calculate string vector

D487—D4F3 Scan and set up string

D4F4—D525 Subroutine to build string vector

D526—D5BC Garbage collection subroutine

D5BD—D605 Check for most eligible string collection

D606—D63C Collect a string

D63D—D679 Perform string concatenation

D67A—D6A2 Build string into memory
D6A3—D6DA Discard unwanted string

D6DB—D6EB Clean the descriptor stack

D6EC—D6FF Perform CHR$
D700—D72B Perform LEFTS
D72C—D72C Perform RIGHTS
D737—D760 Perform MID$
D761—D77B Pull string function parameters from stack

D77C—D781 Perform LEN
D782—D78A Move from string-mode to numeric-mode
D78B—D79A Perform ASC
D79B—D7AC Input byte parameter

D7AD—D7EA Perform VAL
D7EB—D7F6 Get two parameters for POKE or WAIT
D7 F7—D80C Convert floating point to fixed point

D80D—D823 Perform PEEK
D824—D82C Perform POKE
D82D—D848 Perform WAIT
D849—D84F Add 0.5 to accumulator No. 1

.

D850—D861 Perform subtraction

D862—D946 Perform addition

D947—D97D Complement accumulator No. 1

D97E—D982 Print OVERFLOW and exit

D983—D9BB Multiply-a-byte subroutine

D9BC—D9E9 Function constants: 1 , S0R(.5), S0R(2), -00.5. etc

D9EA—DA2F Perform LOG
DA30—DA58 Perform multiplication

DA59—DA8B Multiply-a-bit subroutine

DA8C—DAB6 Load accumulator No. 2 from memory
DAB7—DADS Test and adjust accumulators No. 1 and No. 2.

DAD4—DAE1 Handle overflow and underflow

75

DAE2—DAF8 Multiply by 1

DAF9—DAFD 1 in floating binan/

DAFE—DB06 Divide by 10

DB07—DB1 1 Perform divide-into

DB12—DBA1 Perform divide-by

DBA2—DBC6 Load accumulator No. 1 from memory
DBC7—DBFB Store accumulator No. 1 into memory
DBFC—DCOB Copy accumulator No. 2 into accumulator No. 1

.

DCOC—DC1

A

Copy accumulator No. 1 into accumulator No. 2.

DC1 B—DC2A Round off accumulator No. 1

.

DC2B—DC38 Compute SGN value of accumulator No. 1

.

DC39—DC57 Perform SGN
DC58—DC5A Perform ABS
DC5B—DC9A Compare accumulator No. 1 to memory
DC9B—DCCB Convert floating-point to-fixed-point

DCCC—DCF2 Perform INT

DCF3—DD7D Convert string to floating-point

DD7E—DDB2 Get new ASCII digit

DDB3—DDC1 String conversion constants: 99999999,999999999

1E-H9

DDC2 Print IN, followed by:

DDCD—DDDC Print Basic line number

DDDD—DF1 Convert number or Tl$ to ASCI I

DFl 1—DF70 Constants for numeric conversion

DF71—DF77 Perform SQR
DP 78—DFB3 Perform power function

DF64—DFBE Perform negation

DF6F—DFEC Constants for string evaluation

DFED—E03F Perform EXP

E040—E089 Function series evaluation subroutines

E08A—E093 Manipulation constants for RND
E094—E0F5 Perform RND
E0F6—E260 Kernal patch routines (see Appendix 6 for listings)

E261—E267 Perform COS
E268—E2B0 Perform SIN

E2B1—E2DC Perform TAN
E2DD—E30A Constants for trig evaluation pi/2, 2No.pi, .25, etc.

E30B—E33A Perform ATN
E33B—E377 Constants for ATN series evaluation

E378—E386 Initialise RAM vectors

E387—E3A3 Subroutine to be moved to zero page ($70 to $87)

E3A4—E428 Initialise Basic system

76

E429—E44E Messages: BYTES FREE, **** CBM BASIC
wo ****

E44F—E47B Vector initialisation (see Appendix 6 for listings)

E47C—E4FF Unused space

KERNAL ROUTINES

E500—E504 Return address of 6522

E505—E509 Return max rows and columns of screen

E50A—E51 7 Read/plot cursor position

E518—E580 Initialise I/O

E581—E586 Home function

E587—E5B4 Move cursor to current line index pointer

E5B5—E5C2 Panic NMI entry (Restore key)

E5C3—E5CE Initialise 6561 VIC chip

E5CF—E64E Remove character from queue
E64F—E741 Input a line until carriage return

E742—E8E7 Print routine

E8E8—E8F9 Check for decrement in line index pointer

E8FA—E91

1

Check for increment in line index pointer

E912—E928 Check colour

E929—E974 Table to convert from screen code to ASCII

E975—EAAO Screen scroll routines

EAA1—EB1

D

IRQ routines, put char on screen and update time,

generate I/O

EBIE— EC45 General keyboard scan

EC46—EE1 3 Keyboard matrix tables

EE14—EEBF Command serial bus device to listen

EECO—EEC4 Send secondary address after listen

EEC5—EECD Release attention after listen

EECE—EEE3 Talk second address

EEb4—EEF5 Buffered output to serial bus

EEF6—EF03 Send untalk command on serial bus

EP04—EFT

8

Send unlisten command on serial bus

EF19—EFA2 Input a byte from serial bus

EFA3—EFED NMI continue routine

EFEE—F035 Transmit byte

F036—F1 73 NMI routine to collect data into bytes (RS-232)

F174—F1E1 Kemal messages
F 1 E2—F 1 F4 Print message to screen

F1 F5—F20D Get character from channel

F20E—F279 Input character from channel

77

F27A--F2C6 Output character to channel
F2C7--F308 Open channel for input

F309--F349 Open channel for output

F34A--F3EE Close logical file

F3EF--F3F2 Close all logical files

F3F3--F409 Clear channels

F40A--F541 Open function

F542--F674 Load RAM function (from cassette or bus devices)
F675--F733 Save function

F734--F76F Time function

F770--F77D Test stop key

F7/E--F7AE Error handler

F7AF--F889 Find and read tape header
F88A--F98D Cassette control routines

F98E--FABC Tape read routines

FA6D--FBE9 Byte handler for cassette read

FBbA--FD21 Tape write routines

FD22--FE90 System power up initialisation

FE91--FEA8 Memory check routines

FEA9--FF5B NMI handler

FFbC--FF71 Baud rate tables

FF/2--FF85 IRQ handler

FF85--FFFF Kernal jump vector addresses

78

Description; Data strings up to 88 cinaracters long are input by tinis

routine and stored in the Basic input buffer. Tiie buffer is filled starting

at location $0200 upwards, end of string ternninated by a zero byte.

$C57C— Tokenise Basic Command.

Description; Basic commands are converted to single byte tokens

by this routine, reducing memory requirements for program storage.

Routine required when adding commands to Basic.

$CBIE— Print String Pointed to by Y, A

Communication registers; Y index and Accumulator.

Description; A data string is printed on the current output device,

default device is the screen. The memory address of the start of the

string is pointed to by the contents of the Y index register (LSB of

address) and the Accumulator (MSB of address). The end of the string

is the first byte encountered containing a binary zero.

$CE86— Evaluate Expression.

Communication registers; Page Zero $7A and $7B plus Stack and Aces

No. 1 and No. 2

Description; This routine evaluates a Basic expression starting at

an address stored in locations $7A (LSB of address and $7B (MSB of

address). The result is stored in Accumulator No. 1

.

$CFE6— Logical OR between contents of Ace No. 1 and Ace No. 2.

Communication registers; Floating point Accumulators No. 1 and No.

2.

Description; A logical OR is performed between values contained in

the two floating point accumulators, the result is placed in

accumulator No. 1.

$CFEB— Logical AND between contents of Ace No. 1 and Ace No. 2.

Communication registers; Floating point Accumulators No. 1 and No.

2.

79

Description: A logical AND is performed between values contained

in the two floating point accumulators, the result is placed in

accumulator No. 1.

$D1AA— Convert Floating Point Numberto Integer.

Communication registers: Floating point Accumulator No. 1

.

Description: A number in floating point format stored in

Accumulator No. 1 is converted by this routine to a double byte

integer stored in two bytes of Accumulator No. 1 . The two bytes used
are $64 and $65, the format of the integer number is 1 00* $64 + $65.

$D37D— Perform FRE function.

Communication registers: Floating Accumulator No. 1.

Description: This function determines the number of free bytes of

memory available in the system for user program or data storage. The
arguments of the function are stored and returned as a floating point

number in Accumulator No. 1

.

$D391 — Integer to Floating Point conversion.

Communication registers: Y index register, Accumulator, and
Floating Accumulator No. 1

.

Description: A two byte integer value stored in Y index register and
Accumulator is converted to a floating point number stored in floating

accumulator No. 1. The integer value is stored in the format — 100 *

accumulator + Y index register.

$D77C— Perform LEN function.

Communication registers: X index register, and Floating accumulator

No. 1.

Description: This routine calculates the number of characters in a

string, the argument of the function, ie. the string name, is stored in

bytes $64 and $65 of floating accumulator No. 1 . The string length is

returned in the X index register.

80

— LOOP RETURN ADDRESS

— RETURN LINE No

TO VALUE

SIGN OF STEP

STEP VALUE

VARIABLE'S ADDRESS

$81

FOR -NEXT

$F6FC

RETURN ADDRESS

— RETURN LINE No

$8D

GO -SUB

Fig. 12 — Stack usage by two Basic interpreter routines.

81

$D850— Subtract Ace No. 2. from Ace No. 1

.

Communieation registers: Floating Accumulators No. 1 and No. 2.

and Accumulator.

Description: The contents of floating point accumulator No. 2. is

subtracted from the contents of floating accumulator No. 1. by this

routine, the result being stored in accumulator No. 1. Before this

routine is called the sign comparison byte $6F must be set, this is done
by exclusively ORing the contents of $66 and $6E and storing the

result in $6F, the processor accumulator should also contain the value

stored in location $61 (MSB of Ace No. 1 .).

$D9EA— Perform LOG function.

Communicating registers: Floating point accumulator No. 1

.

Description: This routine performs the LOG function, the value used
in the functions argument is stored in floating accumulator No. 1. the

result is placed in the same accumulator.

$DA30— Multiply Floating Point Number in Memory by Ace No. 1

.

Communicating registers: Floating point accumulators No. 1 and No.

2., accumulator and Y index register.

Description: This routine first obtains the contents of floating

accumulator No. 2 from memory. The memory location is a two byte

address stored in the processor accumulator and Y index register, the

format used is 100 * Y index + accumulator. The value stored in

accumulator No. 2. is then multiplied by the contents of accumulator

No. 1 and the result stored in accumulator No. 1

.

$DA33— Multiply Ace No. 2. by Ace No. 1

.

Communicating registers: Floating point accumulators No. 1. and No.

2. and processor accumulator.

Description: The contents of floating point accumulator No. 2. is

multiplied by the contents of accumulator No. 1., and the result stored

in accumulator No. 1. Before using this routine the sign comparison in

$6F should be set, this is done by exclusively ORing the contents of

the two sign bytes $66 and $6E and storing the result in $6F. The

82

exponent of the value in accunnulator No. 1., stored in $61, should be

loaded into the processor accumulator prior to running this routine.

$DA8C— Move Contents of Memory to Ace No. 2.

Communicating registers: Floating point accumulator No. 2.,

processor accumulator and Y index register.

Description: This routine takes a value stored in memory and loads

it into floating point accumulator No. 2. The two byte memory
address for the value is stored in the processor accumulator and Y
index register, the format used is accumulator + 100 * Y index

register. The routine seperates the sign byte and sets the sign

comparison byte, the contents of $61, the exponents of accumulator

No. 1 are loaded into the processor accumulator.

$DAE2— Multiply Accumulator No. 1 by 10.

Communicating registers: Floating Point Accumulators No. 1 and No.

2.

Description: The contents of floating point accumulator No. 1 is

multiplied by 10 and the result is stored in floating point accumulator

No. 2.

$DAFE— Divide Accumulator No. 1 . by 1 0.

Communicating registers: Floating Point Accumulators No. 1 and No.

2.

Description: The contents of floating point accumulator No. 1 is

divided by 10 and the result is stored in floating point accumulator No.

2.

SDBOF— Divide accumulator No. 2. by Accumulator No. 1

.

Communicating registers: Floating Point Accumulators No. 1 and No.

2.

Description: This routine divides the contents of accumulator No. 2.

by the contents of accumulator No. 1. and puts the result in

accumulator No. 1. Before running this routine the sign comparison in

83

$6F should be set, this is done by exclusively ORIng the contents of

the two sign bytes $66 and $6E and storing the result in $6F. The
exponent of the value in accumulator No. 1., stored in $61, should be
loaded into the processor accumulator prior to running this routine.

$DBA2— Move Contents of Memory to Ace No. 1

.

Communicating registers: Floating Point Accumulator No. 1.,

processor accumulator and Y index register.

Description: This routine takes a value stored in memory and loads
it into floating point accumulator No. 1. The two byte memory
address for the value is stored in the processor accumulator and Y
index register, the format used is accumulator + 100 * Y index

register. The routine seperates the sign byte and sets the sign

comparison byte, the contents of $61, the exponents of accumulator
No. 1, is loaded into the processor accumulator.

$DBC7— Move Contents of Accumulator No. 1 . to Memory.

Communicating registers: Floating Point accumulator No. 1. X and Y
index registers.

Description: The value in floating point accumulator No. 1. is stored

in a specified memory location by this routine. The two byte memory
address is stored in the X and Y processor index registers, the fornnat

used is X index + 100 * Y index register. The routine merges the sign

byte to give the correct memory storage format (the first bit of first

byte = sign).

$DBFC— Transfer Contents of Ace No. 2. to Ace No. 1

.

Communicating registers: Floating Point Accumulators No. 1. and
No. 2.

Description: The current contents of floating point accumulator No.

2., are copied into accumulator No. 1 ., the contents of accumulator No.

2 remain unchanged.

$DCOC — Transfer Contents of Ace No. 1., to Ace No. 2. with
Rounding.

84

Communicating registers: Floating Point Accumulators No. 1., and

No. 2.

Description: The contents of floating point accumulator No. 1 ., are

copied into accumulator No. 2., the contents of accumulator No. 1 ., are

then rounded and if necessary the exponent adjusted.

$DCOF— Transfer Contents of Ace No. 1 ., to Ace No. 2.

Communicating registers: Floating Point accumulators No. 1., and

No. 2.

Description: The contents of floating point accumulator No. 1 ., are

copied into accumulator No. 2., the contents of accumulator No. 1 ., are

then rounded and if necessary the exponent adjusted.

$DC58— Performs ABS function.

Communicating registers; Floating Point Accumulator No. 1.

Description: The absolute value of the contents of floating point

accumulator No. 1 . are returned to accumulator No. 1 by this routine.

$DC39— Perform SGN function.

Communicating registers: Floating Point Accumulator No. 1.

Description: This routine returns the sign of a value stored in

floating point accumulator No. 1. If the value in accumulator No. 1., is

greater than then a 1 is stored in accumulator No. 1., if it equals zero

then a 0, and if less than zero then a— 1

.

$DC5B— Compare Contents of Ace No. 1 ., to Memory.

85

Communicating registers: Floating Point Accumulator No. 1.,

processor accumulator and Y index register.

Description: The current contents of floating point accumulator iJo.

1 ., are compared to a floating point variable stored in memory, and the

processor accumulator set to a value dependant on whether the two
variables are equal or not. The two byte address for the floating point

variable in memory is stored in the processor accumulator and the Y
index register, the format used is accumulator + 100 * Y index. If the

two floating point variables are equal then the processor accumulator

is set to $00, and if not equal then it is set to $FF.

$DC9B— Convert Floating Point Variable to Fixed Point.

Communicating registers: Floating Point Accumulator No. 1

.

Description: A floating point variable stored in accumulator No. 1.,

is converted to a fixed point format by this routine, the fixed point

value is stored in accumulator No. 1

.

$DCCC— Perform INT function.

Communicating registers: Floating Point Accumulator No. 1

.

Description: This routine converts a floating point variable stored in

accumulator No. 1 ., into an integer value, the result is stored back in

accumulator No. 1

.

$DF71 — Perform SQR function.

Communicating registers: Floating Point Accumulator No. 1.

Description: The square root of a floating point variable stored in

accumulator No. 1., is calculated by this routine, the result also in

floating point format is returned in accumulator No. 1

.

$DF78— Raise Ace No. 2., to the power of Ace No. 1

.

Communicating registers: Floating Point Accumulators No. 1 ., and

No. 2.

Description: The contents of floating point accumulator No. 2., is

raised to the power of a value stored in accumulator No. 1., the result

is placed in accumulator No. 1 . Before using this routine the sign

86

comparison in $6F sliould be set, this is done by exclusively ORing the

contents of the two sign bytes $66 and $6E and storing the result in

$6F. The exponent of the value in accumulator No. 1., stored in $61,

should be loaded into the processor accunnulator prior to running this

routine.

$DFED— Perfornn the EXP function.

Communicating registers: Floating Point Accumulator No. 1.

Description: This routine calculates 'e' to the power of the value in

floating point accumulator No. 1., and places the result in

accumulator No. 1.

$E094— Perform the RND function.

Communicating registers: Floating Point Accumulator No. 1, plus

page zero locations $8B to $90.

Description: A random value is created by this routine and placed in

floating point accumulator No. 1. Prior to running the routine floating

point accumulator No. 1., contains a seed value used to initialise the

random number calculation routine, also memory locations $8B to

$90 contain the last random number generated.

$E261 — Perform COS function.

Communicating registers: Floating Point Accumulator No. 1.

Description: The COSine of a value, in radians, stored in floating

point accumulator No, 1., is calculated by this routine and the result

placed in accumulator No. 1

.

$E268— Perform SIN function.

Communicating registers: Floating Point Accumulator No. 1.

Description: This routine calculates the SINe of a value, in radians,

stored in floating point accumulator No. 1., the result is placed in

accumulator No. 1

.

$E2B1 — Perform TAN function.

87

Communicating registers: Floating Point Accumulator No. 1.

Description: This routine calculates the TAN of a value, in radians,

stored in floating point accumulator No. 1 ., the result is placed in

accumulator No. 1

.

$E30B— Perform ATN function.

Communicating registers: Floating Point Accumulator No. 1.

Description: This routine calculates the ATN of a value, in radians,

stored in floating point accumulator No. 1., the result is placed in

accumulator No. 1.

$E378— Initialise System Vectors and Variables.

Communicating registers; none.

Description: All system vectors and variables are initialised by this

routine, it can be used together with its constituent subroutines to

reinitialise system variables and vectors prior to returning to a Basic

program from machine code.

88

USER CALLABLE KERNAL ROUTINES

NAME ADDRESS FUNCTION

HEX DECIMAL
ACPTR $FFA5 65445 Input byte from serial port

CHKIN $FFC6 65478 Open channel for input

CHKOUT $FFC9 65481 Open channel for output

CHRIN $FFCF 65487 Input character from channel

CHROUT $FFD2 65490 Output character to channel

CIOUT $FFA8 65448 Output byte to serial port

CLALL $FFE7 65511 Close all channels and files

CLOSE $FFC3 65475 Close a specified logical file

CLRCHN $FFCC 65484 Close input and output channels

GETIN $FFE8 65512 Get character from keyboard queue
(keyboard buffer)

lOBASE $FFF3 65523 Returns base address of I/O devices

LISTEN $FFB1 65457 Command devices on the serial bus
to LISTEN

LOAD $FFD5 65493 Load RAM from a device

MEMB0T$FF9C 65436 Read/set the bottom of memory
MEMTOP $FF99 65433 Read/set the top of memory
OPEN $FFCO 65472 Open a logical file

PLOT $FFFO 65520 Read/set X, Y cursor position

RDTIM $FFDE 65502 Read real time clock

READST $FFB7 65463 Read I/O status word
RESTOR $FF87 65415 Restore default I/O vectors

SAVE $FFD8 65496 Save RAM to device

SCNKEY $FF9F 65439 Scan keyboard

SCREEN $FFED 65517 Return X, Y organisation of screen

SECOND $FF93 65427 Send secondary address

after LISTEN
SETLFS $FFBA 65466 Set logical, first, and second

addresses

SETMSG $FF90 65424 Control KERNAL messages
SETNAM $FFBD 65469 Set file name
SETTIM $FFDB 65499 Set real time clock

SETTMO $FFA2 65442 Set timeout on serial bus

STOP $FFE1 65505 Scan stop key

TALK $FFB4 65430 Command serial bus device to TALK
TKSA $FF96 65430 Send secondary address after TALK
UDTIM $FFEA 65514 Increment real time clock

UNTLK $FFAB 65451 Command serial bus to UNTALK
VECTOR $FF84 65412 Read/set vectored I/O

89

USER CALLABLE KERNAL ROUTINES

The VIC operating system software has been specially designed to

allow the easy access of subroutines within it. These subroutines can
be used by a nnachine code routine calling either a ROM or RAM based
vector address. The required variables having been previously passed
to the subroutine via the processor registers. The main block of kernal

vector addresses are stored at the top of ROM memor/, a list is shown
in Table 4. The smaller number of RAM vector addresses are stored in

page three of memory and a list of these is shown in Table 1 . The
reason why some vector jump addresses are stored in RAM is that

they can be changed. By changing the vector addressed, routines

controlling the system I/O and interrupt handling can be
reconfigured. It should be noted that all the RAM vectors, except the

interrupt handlers, point to routines which are also pointed to be
ROM vectors. The following is a detailed description of each of the
vector subroutines together with their function and use.

$FF8A— Restore Old 1 /O Vectors.

Communicating registers: none.

Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: Restore default vector values for system subroutines

and interrupts.

$FF8D— Read and Set Vectored I /O.

Communicating registers: X and Y index registers.

Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: If this routine is called with the carry bit set, it will then
read the current contents of the RAM vectors and put them in a list

starting at a memory location pointed to by (X, Y). When this routine

is called with carry clear, the user list pointed at by (X, Y) is transferred

to the system RAM vectors. When using this routine the best practice

is to read first the entire contents of the vector table into a user

memory area, alter the desired vectors, then empy the contents back
into the system.

90

$FF90— Control Kernal Messages.

Communicating registers: processor accumulator.

Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: This routine controls the printing of error and
diagnostic messages by the kernal. It is called by placing a value in the

accumulator. Bits 6 and 7 of this value control the message printing,

bit 7 is set for kernal messages, and bit 6 for control messages. Bits

to 5 designate the message, and point to an entry in the error message
tables.

$FF93— Transmit Secondary Command.

Communicating registers: processor accumulator.

Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: $FFB1

Description: Sends a secondary address after 'listen' routine $FFB1.

This routine cannot be used to send a secondary address after a 'talk'

command from routine $FFB4.

$FF96— Transmit Secondary After 'Talk'.

Communicating registers: processor accumulator.

Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: $FFB4

Description: Sends a secondary address for 'talk'. By loading the

accumulator with a number between and 31, the user sends a

secondary address command over the IEEE with this subroutine. This

routine can only be used after $FFB4, it will not work after $FFB1

.

$FF99— Read/Set Top of Memory.

Communicating registers: X and Y index registers.

Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: When this routine is called with carry set, the pointer

91

to the top of RAM is read into .X and .Y. A call with carry clear will copy

the contents of .X and .Y into this pointer.

$FF9C— Read/Set Bottom of Memory.

Communicating registers: X and Y index registers.

Error Returns; none.

Stack requirements; 2.

Preparatory routines; none.

Description; A call to this routine with the carry bit set, causes the

pointer to the bottom of RAM to be read into .X and .Y. The initial

value is always $400. If the routine is called with carry clear then the

contents of .X and .Y are transfered to the bottom of memory
pointers.

$FF9F— Scan Keyboard.

Communicating registers; none.

Error Returns; none.

Stack Requirements;

Preparatory routines; none.

Description; This routine scans the keyboard, if a key is down, its

corresponding ASCII code value is placed in the keyboard queue

($0277 to $0280). This is the same routine called by the interrupt

handling routines ever/ 1 /60 second.

$FFA2— Set Timeout on IEEE.

Communicating registers; processor accumulator.

Error Returns; none.

Stack Requirements; 2.

Preparatory routines; none.

Description; When the processor accumulator contains a in bit 7,

timeouts are enabled by this routine. A 1 in bit 7 disables timeouts.

Timeouts are a method by which the VIC can poll an IEEE device for

data without hanging in a timeshake sequence. The device must

respond to DAV within 64 milliseconds. The VIC and CBM disks use

the timeout to communicate a 'file not found' status in the OPEN
command.

92

$FFA5— Input byte from IEEE Bus.

Communicating registers: processor accumulator.

Error Returns: see routine $FFB7.

Stack requirements: 13.

Preparator/ routines: $FFB4 and $FF96.

Description: This routine handshakes a byte off the IEEE bus. The
data is returned in the processor accumulator. It is assumed that the

device has been told to 'talk' by routine $FFB4 and it is possible that a

secondary address has been sent by the routine $FF96.

$FFA8— Output Byte to IEEE Bus.

Communicating registers: processor accumulator.

Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: $FFB1 and$FF93.

Description: The accumulator is loaded with a byte of data to

handshake onto the IEEE bus. A device must be listening or status will

show a timeout error (see routine $FFA2). One character is always
buffered by this routine. When an 'unlisten' command is sent (by

routine $FFAE), the buffered character is sent with the EOl line

asserted, the 'unlisten' command is then sent.

$FFAB— Command IEEE Bus to 'Untalk'.

Communicating registers: none.

Error Returns: none.

Stack Requirements:

Preparatory routines: none.

Description: This sends an 'untalk' command to an IEEE device via

the IEEE bus.

$FFAE— Command IEEE Bus to 'Unlisten'.

Communicating registers: none.

Error returns: none.

Stack Requirements:

Preparatoray routines: none.

Description: This sends an 'unlisten' command to an IEEE device via

the IEEE bus.

93

$FFB1 — Command IEEE Device to 'Listen'.

Communicating registers; processor accumulator.

Error Returns; see routine $FFB7.

Stack Requirements;

Preparatory routines: $FFB1

Description; The IEEE command 'listen with attention' is performed

by this routine. The processor accumulator is loaded with a device

number between and 30. This subroutine then ORs in bits to convert

the device number to a 'listen' address and then transmits this data as

a command on the IEEE bus.

$FFB4— Command IEEE Device to 'Talk'.

Communicating registers; processor accumulator.

Error Returns: see routine $FFB7.

Stack Requirements;

Preparatory routines: none.

Description; The IEEE command 'talk with attention' is performed

by this routine. The processor accumulator is loaded with a device

number betwen and 30. This subroutine ORs in bits to convert the

device number into a 'talk' address and then transmits this data as a

command on the IEEE bus.

$FFB7— Read I /O Status Word.

Communicating registers; processor accumulator.

Error Returns: none.

Stack Requirements: 2

Preparatory routines; none.

Description; Returns the current I/O status. Usually checked after

initiating any new communication to a channel. The bits in the byte

returned contain the following data;

ST ST Cassette lEEE/RW Tape

Bit Numeric Read Verify

Position Value + Load

1 Time out/write

1 2 Time out/read

2 4 " Short block Short block

3 8 Long block Long block

4 16 Unrecoverable Any mismatch

94

read error

5 32 Checksum error Checksum error

6 64 End of file EOl line

7 128 End of tape

present

Device not End of tape

$FFBA— Set Logical, First, and Second Address

Communicating registers: processor accumulator, X and Y Index

registers:.

Error Returns; none.

Stack Requirements: 2

Preparatory routines: none.

Description: Setting logical file number, device address, and

command. The logical file number is used as a key by the system to

access data stored in a table by the open file subroutine. The device

address ranges from to 30 and corresponds to the following VIC or

CBM devices:

Keyboard

1 Cassette No. 1

.

2 Cassette No. 2 . (unused on VIC)

3 CRT display

4 IEEE printer

8 VIC or CBM IEEE disk drive

Device numbers 4 or greater correspond to devices on the IEEE bus.

Load the accumulator with the logical file number, X index register

with the device number, and the Y index register with the command.
The command is sent as a secondary address on the IEEE following

the device number during an attention sequence. IF the programmer

desires no secondary address to be sent, load Y index with a 255.

SFFBD— Set File Name Information.

Communicating registers: processor accumulator, X and Y index

registers.

Error Returns: none.

Stack Requirements:

Preparatory routines: none.

Description: Should a file be opened without a file name, the name
length must be set to zero. Load the accumulator with the length, X
index with the low order address of the file name and Y with the high

95

order address. The file name address can be any valid memory
address where the string of characters corresponding to the file name
are stored.

$FFCO— Open Logical File.

Communicating registers: none.

Error Returns: 1 , 2, 4, 5 and 6.

Stack Requirements:

Preparatory routines: $FFBA and $FFBD.

Description: Open logical file to device. There are no arguments to

be set up for this routine. Both $FFBA (Set logical number, device

address and command) and $FFBD (Set file name information) must
be called before calling this routine.

$FFC3— Close Logical File.

Communicating registers: processor accumulator.

Error returns: none.

Stack Requirements:

Preparatory routines: none.

Description: Close a logical file to a device. When all t/0 to a file is

completed this subroutine is called with the accumulator loaded with

the logical file number used in the 'open' subroutine $FFCO.

$FFC6— Open Channel for Input.

Communicating registers: X index register.

Error Returns: 3, 5 and 6.

Stack Requirements:

Preparatory routines: $FFCO

Description: Assuming that a file has been opened by subroutine

$FFCO (open logical file),, it can be opened as an input channel. Of

course the characteristics of the device will determine if it is valid to

96

do so. The logical file number if put in the X index register. This

subroutine must be executed before subroutines $FFCF (input

character from channel) or $FFE4 (get character from keyboard
queue) are executed for a device other than the keyboard. If input

from the keyboard is desired, and there is no association to the logical

file number by a previous open file, then the call to this subroutine

may be dispensed with. On the IEEE this subroutine results in sending

a talk address followed by a secondary address if one was specified in

the open subroutine ($FFCO).

$FFC9— Open Channel for Output.

Communicating registers: X index register.

Error Returns: 3, 5 and 7.

Stack Requirements:

Preparatory routines: $FFCO.

Description: Assuming that a file has been opened by subroutine

$FFCO (open logical file), it can be opened as an output channel. Of
course, the characteristics of the device will determine if it is valid to

do so. This subroutine must be executed before subroutine $FFD2
(output character to channel) is executed for a device other than the
CRT. If output to the CRT is desired, and there is no association to an
open file by logical file number, then the call to this subroutine may be
dispensed with. On the IEEE this subroutine results in sending a listen

address followed by a secondary address if one was specified in the

open subroutine ($FFCO).

$FFCC— Close Input and Output Channels.

Communicating registers: none.

Error Returns: none
Stack Requirements:

Preparatory routines: none.

Decription: After opening a channel and performing I/O, this

routine closes all open channels and restores the default channels.

Default input is device (keyboard) and output device 3 (CRT screen).

This routine may be called optionally by the programmer. An 'untalk'

is sent to clear the input channel if the device 'is on the lEE. An
'unlisten' is sent to clear the output channel. By not calling this

routine and leaving a listener addressed on the IEEE, multiple devices
can receive data on the bus. An example would be to address the
printer to listen and the disk to talk.

97

$FFCF— Input Character from Channel.

Comnnunicating registers; processor accumulator.

Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: none.

Deschption: A call to this routine will return a character of data from

the channel set up by a call to subroutine $FFC6 (open channel for

input), or the default input channel if no other has been set up. Data is

returned in the accumulator, The channel remains open after the call.

In the case of the keyboard device, the cursor is turned on and

continues to blink until carriage return is typed. Characters on the line

are then returned one by one, by calls to this routine. Finally carriage

return is sent and the process begins again.

$FFD2— Output Character to Channel.

Communicating registers: processor accumulator.

Error Returns: see routine $FFB7.

Stack Requirements:

Preparatory routines: none.

Description: The data to be output is loaded into the accumulator. A
call to $FFC9 (open channel for output) sets up the output channel, or

if this call is omitted, data is sent to the default device which is

number 3, the CRT. The character can be transmitted to multiple

devices on the IEEE if a clear channel is not performed after the

corresponding open channel for output.

$FFD5— Load RAM from Device.

Communicating registers: processor accumulator, X and Y index

registers.

Error Returns: 0, 4, 5, 8 and 9.

Stack requirements;

Preparatory routines: $FFBA and $FFBD.

Description; Load from device into RAM. On call accumulator =

for load, or accumulator = 1 for verify. The index registers (X, Y)

contain the address to load into for secondary address = 3. If the

secondary address = 0, 1 or 2 then the block will load into memory
starting at the address specified in the block header. On return the

highest RAM address loaded is contained in the index registers (X, Y).

98

$FFD8— Save RAM to Device.

Communicating registers: X and Y index registers.

Error Returns: 5, 8 and 9

Stacl< Requirements:

Preparatory routines: $FFBA, SFFBD and FF9C.

Description: Saves memory from the bottom of memory (set by
routine $FF9C) to the memory address (X, Y) to a logical device. A file

name is not required for device 1 (the cassette deck) but an error

condition exists for any other device saved without a file name. Device

(keyboard), and device 3 (screen) are not defined for this routine.

$FFDB— Set Real Time Clock.

Communicating registers: processor accumulator, X and Y index

registers.

Error Returns: none.

Stack Requirements:

Preparatory routines: none.

Description: A system clock is maintained on a 1/60 second
interrupt basis. Three bytes are provided to count jiffies up to

5,184,000 or 24 hours, at which point the clock rolls over to zero. To set

the clock load the accumulator with the most significant, X index with

the next most significant and Y index with least significant byte of

time in jiffies.

$FFDE— Read Real Time Clock.

Communicating registers: processor accumulator, X and Y index

registers.

Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: The system clock can be read at any time. Three bytes

are returned containing a binary value corresponding to the time in

1/60 of a second. The accumulator contains the most significant, X
index next most significant, and Y index the least significant byte.

99

$FFE1 — Check Stop Key.

Communicating registers: processor accumulator.

Error returns: none.

Stack Requirements.

Preparatory routines: none.

Description: This routine sets the Z flag if the STOP key on the
keyboard is pressed while the routine is called. All other flags are

maintained. If the stop key is not pressed then the accumulator
contains a byte corresponding to the last row of the keyboard scan.

The user can check for other key closures in this manner.

$FFE4— Get Character from Keyboard Queue.

Communicating registers: processor accumulator.

Error Returns: none.

Stack Requirements:

Preparatory routines: none.

Description: Get buffered character from keyboard queue. This

subroutine removes one character from the keyboard queue and
returns an ASCII value in the accumulator. If the queue is empty, the
value returned will be zero. Characters are put into the queue by an
interrupt driver scan which calls the routine $FF9F. Obviously these
routines will not work if the interrupt is disabled in any way.

$FFE7— Close All Files.

Communicating registers: none.

Error returns: none.

Stack Requirements: 1 1

.

Preparatory routines: none.

Description: With this subroutine the pointers into the open file

table are reset. Additionally, the routine $FFCC (close input and
output channel) is called to reset the I/O channels.

$FFEA— Increment Real Time Clock.

Communicating registers: none.

Error Returns: none.

Stack Requirements: 2.

Preparatory routines: none.

Description: Normally this routine is called every 1/60th second to

100

keep the system clock register updated. If the user processes own
interrupts then this subroutine must be regularly called to update

time and keep the STOP key routine functional.

$FFED— Return X, Y Organisation of Screen.

Communicating registers; X and Y index registers.

Error Returns:

Stack Requirements; 2

Preparatory routines; none.

Description; Returns the constant organisation of the screen e.g. 22
columns in .X and 23 lines in .Y. This routine has two main uses, it

allows software to be written for the VIC 20 to be run on a future VIC

40 without any change in screen handling routines, the program will

recognise which machine it is being run on. Secondly the 6561 allows

the user to change the screen organisation, within certain limits, this

routine can be used to check current organisation.

$FFFO— Read/Set X, Y Cursor Position.

Communicating registers; X and Y index registers.

Error Returns; none.

Stack Requirements; 2.

Preparatory routines; none.

Description; A call with carry set reads the current X, Y position of

the cursor on the screen into .X and .Y. A call with carry clear moves
the cursor to location X, Y on the screen as determined by the

contents of .X and .Y.

$FFF3— Return Base Address of I/O.

Communicating registers; XandY index registers.

Error Returns; none.

Stack Requirements; 2.

Preparatory routines; none.

Description; Returns the address of the page containing i/0 in X, Y.

This routine can be used with an offset to access memory mapped I/O

devices in the VIC. This function and subsequent register accesses are

machine dependent.

101

SYSTEM INITIALISATION AND AUTO POWER UP

When the VIC is switched on, a pre-defined initialisation sequence
is executed. This initialisation sets the system up so that all RAM
variables and vectors are correctly set; screen I/O and keyboard

correctly defined; mennory checked and the Basic interpreter set in

the direct input mode. This initialisation sequence is triggered by the

power on reset circuit. The reset circuitry on the VIC consists of a 555
timer 10 wired in such a way that when power is first switched on the

reset line is held low for a short period. When the processor reset line

is pulled low momentarily (minimum six clock cycles) it causes the

processor to start execution of a program whose starting address is

stored in locations $FFFC and $FFFD. The start routine whose address

is contained in the reset sector is located at $FD22.

The start routine is typical of the great flexability inherant in the

design of the VIC. It allows two options, go-to the initialisation routine

contained in ROM expansion memory. The normal initialisation

routine (located at $FD2F) is used whenever the VIC is to run

programs in Basic or Basic programs with machine code subroutines.

The initialisation code sets up the OS RAM vectors, the I/O devices,

initialises the 6561 and then jumps to the start of Basic at location

$C000.

The area of memory allocated for memory expansion on the VIC can

be divided into three sections. Memory space reserved exclusively for

ROM memory, space reserved for either ROM or RAM memory, and

that reserved exclusively for RAM memory expansion. The section of

expansion memory that is of interest in its connection with system
initialisation is that reserved exclusively for ROM memory, locations

$A000 to $BFFF. The first function of the start routine at $FD22 is to

check if there is a ROM inserted in address space $A000. It does this by

testing for a string of 5 characters starting at a specific location on the

ROM. The sequence of five bytes searched for is:

Address - $A004 contents --$41 ASCII character— 'A'

$A005 $30 '0'

$A006 $C3 rvs'C
$A007 $C2 rvs'B'

$A008 $CD rvs 'M'

If the start routine finds this character string then program control

jumps to an address stored in the first two bytes of the ROM, SAOOO
and SAOOI, the user written 'hard start' initialisation routine. A
second jump address is stored in locations $A002 and $A0D3, this is

102

the 'warm start' routine which returns program control to Basic, it is

called when the Restore key is pressed. If the 'AOCBM' character

string is not found then the zero flag is set and the initialisation

routine at $FD2F called.

This feature of the VIC will allow the machine to be used in a wide
range of special applications where the programmer requires the

machine to automatically power up into his program. All the

commercial ROM based games packs use this method. The most
interesting application is the enhancement or alteration of Basic by
adding extra commands or changing the operation of existing

commands. The example shown in Appendix 2 demonstrates how
extra commands can be added, the example adds a range of graphic

commands to Basic. This program can easily be modified to run any

commands required by the user, simply by adding the command
name and the start address of its associated subroutine into the

command tables starting at $A056. Existing commands involving

system I/O can be modified if those commands use one or more of the

RAM vector addresses. This is done by simply changing the RAM
vector address so that it points to a routine in the $A000 ROM, this

routine then performs the new version of that routine. An example
would be if the programmer required the VIC to communicate with

devices using a different communications system, e.g. Centronics, to

that provided on the VIC (serial IEEE, or RS-232). In this case all the I/O

routines in the kernal would have to be changed so that data was
input and output in the right format. The new versions of the I/O

routines are put in the $A000 ROM and the initialisation routine

simply sets up the correct new RAM vector addresses before

returning to the main initialisation routine and Basic.

103

SYSTEM WEDGES

A system wedge is a machine code routine inserted into the normal

system software, allowing the user to either modify, the system
operation or monitor system functioning. There are two main
positions where code can be wedged into the VIC system software,

they are:

Interrupt wedge — code inserted into one or other of the two
interrupt handling routines (NMI or IRQ) using the interrupt RAM
vector jump addresses. A wedge routine inserted into the regular

60Hz IRQ interrupt can be used to scan for I/O input or perform

background processing.

RAM vector wedge — a wedge routine inserted into one or more of

the RAM vectors could be used to change the I/O configuration or file

handling capabilities of the system.

CHARCOT wedge — this is a wedge inserted into the CHARCOT
subroutine in page zero memory. Such a wedge can be used to

intercept each Basic command in a program as it is executed. The
principle use for such a wedge is to add extra commands to the Basic

interpreter.

Three routines are required to implement a system wedge;

1 — the wedge must be initialised, this is done by a routine

inserting a jump address to the wedge code into the CHARCOT
routine or replacing an existing RAM vector address.

2 — the wedge code, this code performs the required function

which amends or replaces the system function into which it is

inserted. If an interrupt wedge is used, the wedge code should be

terminated with a jump to the address originals contained in the

interrupt vector. With a RAM vector wedge the wedge code can be

terminated with either a jump to the normal function subroutine, or

simply terminated with an RTS instruction, depending on the

programmers requirements. A CHARCOT wedge is terminated with

the section of the CHARCOT code which is replaced by the wedge
jump address followed by an RTS instruction.

3 — when the wedge code is finished with it must be disabled by

returning the vector addresses to normal or restoring the normal

CHARCOT routine. The following system subroutines can be utilised

to do this operation:

104

$E45B— restore vectors

$E3A4— restore CHARCOT and zero page

Examples of these routines are shown in the following programs.

0088

.*: life ;#:
:»!:'

dK'-' i-1H

TIM

--.vi

-JIF iiilsH

If"-

C:i-iHF^:Gi

#*20
CHhPGi

'iC #$30
" "

±i:tn0

0073 \

-
;:; f MJ 'fi: d'Se irlto C H'-iRG0'"" code

0873
i;;-- I'-i

'"-' "/
Eb 7R WEDGE .L i

"!
i..- $0070

0075 .D0 :!. :~ ErC WEDGE

1

0077 Et- 7'K li-^G
•i" -'"

i'"i ""'I",

007'y FiD .*;* ** WEDGE 1 LDh FOINTEK
807C i_. _:• '3h CMF' #$3H
0e7E !~ i^- 0H BEQ WEDGE2
0886 Cy ^.. K'i CMF #$20
;'!^f~(C'""' F0 EF BEQ WEDGE
k'JkjO'^ 20 00 10 ;<-:Q CODE
0087 20 00 13 JSR REFLRCE
008H 60 iJEDGE2 RTS

1 000

1 &0y

'C''t--Bf''t- Of US'??" IMt'CJ'St" K'i"Oifi~'3iU

Ki='!'-' iS.OS!i)&'i'K- "fof" L HHK'..'''..J 1 (./C"dt? $y4""'$'

105

LOC CODE LINE

E378 20 5B E4 INIT JSR INITV i GO INIT VECTORS
JSR INITCZ i GO INIT CHARGET 8< Z-PAGE
JSR INITMS i GO PRINT INIT MESSAGE
LDX »STKEND-256 i SET UP END OF STACK
TXS
JMP READY ; GO TO READY

E37B 20 A4 E3
E37E 20 04 E4
E381 A2 r-B

E383 9A
E384 40 74 C4

E3S7 E6 7A INITAT INC CHRGET+7
E3C3"? DO 02 ONE CHDGOT
E38B E6 7B INC CHRGET+8
E3BD AD 60 EA CHDGOT LDA 60000
E390 C9 3A CMP #':

E392 BO OA BCS CHDRTS
E394 C9 20 CMP «'

E37& FO EF BEQ INITAT
E398 38 SEC
E399 E9 30 SBC #'0
E37B 38 SEC
E39C E9 DO SBC «»D0
E39E 60 CHDRTS RTS
E39F 80 BYT 128. 79,
E3A0 4F
E3A1 C7
E3A2 52
E3A3 58

E3A4 A9 4C INITCZ LDA #76
E3A6 85 54 BTA JMPER
E3AB 85 00 STA USRPOK
E3AA A9 48 LDA tt<FCt-:nR

E3AC AO D2 LDY »>FCbRR
E3AE 85 01 STA USRPOK+1
E380 84 02 RTY USRPOK+2
E3B2 A9 91 LDA ttCGIVAYF
E3B4 AO D3 LDY «;givayf
E3E6 85 05 STA ADRAY2
E3B8 84 06 STY ADRAY2+1
E3BA A9 AA LDA »::flpint
E3BC AO Dl LDY #>FLPINT
E3BE 85 03 STA ADRAYl
E3C0 84 04 BTV ADRAYl+1
E3C2 A2 IC LDX WIMITCZ-INITAT-1
E3C4 BD 87 E3 MOVCHG LDA INITAT,

X

E3C7 75 73 BTA CHRGET, X

E3C9 CA OCX

106

LOC CODE LINE

E3CA 10 F8
E3CC A9 03
E3CE 85 53
E3D0 A9 00
E3D2 85 68
E3D4 85 13
E3D6 85 IB
E3D8 A2 01
E3DA 8E FD 01
E3DD 8E FC 01
E3E0 A2 19
E3E2 86 16
E3E4 38
E3E5 20 9C FF
E3ES 86 2B
E3EA 84 2C
E3EC 30
E3ED 20 99 FF
E3F0 86 37
E3F2 84 38
E3F4 86 33
E3F& 84 34
E3Fa AO 00
E3FA 98
E3FB 91 23
E3FD E6 2E
E3FF DO 02
E401 E6 2C
E403 60

USEDEF

INIT20

BPL MOVCHG
LDA #STRSIZ
STA FOUR6
LDA «to

STA BITS
STA CHANNL
BTA LASTHT+l
LDX «1
STX BUF-3
STX BUF-4
LDX #TEMPST
STX TEMPPT
SEC
JSR «FF9C
STX TXTTAB
STY TXTTAB-H
SEC
JSR »FF99
STX MEMS 1

2

STY MEMSIZ+l
STX FRETOP
STY FRETOP+1
LDY #0
TYA
STA (TXTTAB)Y
INC TXTTAD
BNE INIT20
INC TXTTAB+1
RTS

i READ BOTTOM OF MEMORY

iNOW TXTAB HAS IT

iREAD TOP OF MEMORY

E404 A5 2B INITMS LDA TXTTAB
E406 A4 2C LDY TXTTAB+1
E408 20 08 C4 JSR REASON
E40B A9 36 LDA #<FREMES
E40D AO t;4 LDY «:.FREHES
E40F 20 IE CB JSR STROUT
E112 A5 37 LDA MEMS I

Z

E414 33 SEC
!r415 E5 2B SBC TXTTAB
E417 AA TAX
E4)e AS 38 LDA MEMSIZ+l
E4IA E5 2C SBC TXTTAB+1
E41C 20 CD DD JSR LINPRT
E41F A9 29 LDA #CWOI(DS
E421 AO E4 LDY #>WDRDS
E433 20 IE CB JSR STROUT
E426 4C 44 C6 JMP SCRTCH

107

LOC CODE LINE

E^29 20 42 WORDS .BYT ' BYTES FREE'. 13.

E434 OD
E435 00
E436 93 FREMES . BYT 147, '»«»» CBM BASIC V3 ****'

E437 2A 2A
E44D OD . BYT 13,0
E44E 00

E44F 3A 04 BVTRS . WOR NERROR, NMAIN. 1

E451 83 C4
E453 7C C5
E455 lA C7
E457 E4 C7
E459 86 CE
E45B i

E45B A2 OB INITV LDX #INITV-BVTRS-1
E45D BD 4F E4 INITVl LDA BVTRS, X

E460 9D 00 03 STA lERRDR. X

E463 CA DEX
E464 10 F7 BPL INITVl
E466 60 RTS

NGONE. NEVAL

INIT VECTORS

108

112 - Overview of 6561 Interface Chip

1 15 - Internal Registers of the 6561

120 - 6561 Display Modes

134 - Display Format Control

136 - Video Mennory Address Control

137 - Colour Control

144 - 6561 Sound Generators

IE

o
5
cc

z

o

o
o
u

i>

ADDRESS

COMPUTATION

T » » St—X—V—;

y i i ,i _I L *

^

-n-'- T ~T—f—T

—

''

1
13
58

<}

i§

<^-^

T
§1

Fig. 13 — Block diagram of the 6561 Video Interface chip.

Ill

OVERVIEW OF THE 6561 VIDEO INTERFACE CHIP

Many of the VIC's outstanding features are attributable to a single

integrated circuit, tlie 6561 video interface chip. This single device

provides all the circuitry necessary to generate colour programmable

character graphics, with high screen resolution. The 6561 also

incorporates sound effects generation, analogue to digital conversion

for joysticks, and light pen capability. All these functions are under

direct programmer control via the 16 addressable control registers of

the 6561, to use these functions an understanding of the 6561 's

operation is essential. The video interface chip has three seperate

functions, these are:

1 — Control and generation of the CRT display.

2 — Generation of the master oscillator clock.

3 — Specialised I/O for use in the video-games environment.

Only functions 1 and 3 are of interest to the programmer, the

generation of the master oscillator clock is purely a hardware feature

which ensures that all the system timing is synchronised with that of

the 6561

.

The control and generation of a colour display on a TV or monitor is

the primary function of the 6561 . To do this it must access four

seperate areas of the VIC's memory space, the location and size of

two of these areas is under programmer control. The four memory
areas each have their own function in display generation, they are:

1 — Video RAM character pointer, each location corresponds to a

position on the screen, location in this section of RAM contains the

ASCII code of the character displayed in the top left corner of the

screen, location 1 has the next character to the right and so on for all

the character positions on the screen. On the standard VIC with no

memory expansion, this section of memory is 506 bytes long starting

at location $1E00, if there is more than the bottom 3K memory
expansion then the starting location is $1 000.

2 — Colour pointer, this section of RAM is identical in size to the

video character pointer and contains data on the foreground and

background colour of each character. Location in this section

contains the foreground and background colour of the character in

location of the character pointer (i.e. top left character on the

screen), and so on for all character positions on the screen. On the

standard VIC with no memory expansion this section of memory is

506 bytes long starting at location $9600, if there is more than 3K of

expansion memory then the starting address is $9800.

112

3 — Character generator, this section of memory contains the

pattern of dots used to display each of the 255 different characters,

the dot pattern for each character is contained in eight consecutive
memory locations (this can be set to 16 consecutive locations if

required), each bit of each byte corresponding to a dot position in that

character, 1 = a dot and = a space. The character generator in

normal operation is stored in a 4K ROM, starting address $8000. By
re-defining the character generator start address to point to 4K block

of RAM a user definable character generator can be created.

4 — 6561 control registers, these registers control the way in

which the 6561 operates and are located in 16 consecutive memory
locations (their address is defined by hardware). The addresses used
lie between $9000 and $900F.

In normal operation the kernal initialisation routines set up the
registers of the 6561 to give the standard VIC display format, 23 lines

by 22 columns, using the character generator at location $8000. The
routines then put space characters into all locations in the character

pointer RAM and set all locations in the colour pointer to give blue on
white characters, control register 16 is set to give a white background
and a cyan border.

To understand the operation of the VIC more completely, consider
the diagram in Figure 8. This shows the three areas of memory used,

video RAM, colour RAM, and character generator for a standard 22
column, 23 line display. Each of the 506 locations in the video RAM
contains a code value or pointer into the character generator, in the
diagram the location corresponding to column 22, line 10 contains the
value 45. This means that character number 45 is displayed in that

character space, the same location in the colour RAM contains the
value 2, this makes the character red. Teh character number is used as
an index into the character generator. The VIC fetches each of the 506
video RAM location values and performs an address computation on
each of them to locate the desired value of the address of the eight

bytes used to store each character in the character generator. The
address computation is quite simple, if 8x8 characters are being used
then the character code value (45 in the example) is multiplied by
eight and the result added to the start address of the character
generator (this base address is contained in the 6561 control register

No. 5.). The eight bytes of the character generator pointed to by this

address, are transfered (one byte per scan line) via an internal shift

113

register on the 6561 to the video display as a serial bit stream. This bit

stream combined with control pulses from the 6561 comprises the

composite video output signal of the VIC. This signal is fed via a

modulator to the TV set which then generates the required display.

Besides controlling the video output of the VIC the 6561

implements a series of interactive I/O features which are designed

principaly for games applications. There are three of these features,

they are:

1 — Sound generation system consisting of: three independently

programmable tone generators, a white noise generator, and an

amplitude modulator. The sound generation system can be used to

create special sound effects and can even be used to play music of

acceptable quality.

2 — Two anaologue to digital converters, these are intended for use

with a potentiometer or joystick input, ideal for moving the cursor or

games character about the screen.

3 — Light pen input, a photocell connected to this input and

pointed to a part of the screen will return the screen co-ordinates of

that point in two of the 6561 internal registers, ideal for interactive

non keyboard input.

114

THE INTERNAL REGISTERS OF THE 6561

The sixteen eight bit control registers within the 6561 enable the
microprocessor to control all the operating nnodes of the VIC. These
control registers connprise sixteen successive memory locations
starting at location 36864. and are accessible from either Basic (using
PEEK and POKE) or machine code programs. The sixteen control
registers of the 6561 are as follows:

Control register No. 1

.

Location— Hex $9000 Decimal 35864
Contents in normal VIC operating mode— Decimal 1

2

Bits to 6 of this register determine how far from the left side of the
TV screen the first column of characters will appear. It is used to
horizontally centre various sizes of video matrices on screen. Bit 7
when set to 1 enables the interlaced scan mode. Interlacing can be
used with the appropriate hardware to display the VIC screen over a
normal TV picture, this could be used for video titleing.

To demonstrate the horizontal movement of the screen by changing
the contents of this register enter and run the following program
10FORQ=0TO40
20 POKE 36864,0
30FORX=0TO1000:NEXTX :delay

40NEXTQ
50 POKE 36864, 1

2

: restore to normal

To demonstrate the effect of an interlaced display enter this
command:
POKE 36864, 140

Control register No. 2.

Location— Hex $9001 Decimal 36865
Contents in normal VIC operating mode— Decimal 38

Determines how far from the top of the TV screen the first row of
characters will appear. It is used to vertically centre various sizes of
video matrix on the screen.

To demonstrate the vertical movement of the screen by changing the
contents of this register enter and run the following program
10FORO=0TO150
20 POKE 36865,0
30FORX=0TO100:NEXTX :delay

115

40 NEXT

Q

50 POKE 36865,38 ; restore to normal

Control register No. 3.

Location— Hex $9002 Decimal 36866

Contents in nornnal VIC operating mode— Decimal 1 50

Bits 0-6 determine the number of columns in the video matrix, thus for

a 22 column screen bits 0-6 will contain the value 22. Bit 7 is part of the

video matrix address stored in control register No. 6, this bit is

normally set to logical '1'
(i.e. add decimal 128 to value in bits 0-6).

To demonstrate the use of this register to change the number of

columns displayed on the screen enter and run the following

program;

10FORQ=128TO155
20 POKE 36866,0
30FORX=0TO1000:NEXTX idelay

40 NEXT Q
50 POKE 36866,1 50 : restore to normal

Control register No. 4.

Location— Hex $9003 Decimal 36867

Contents in normal VIC operating mode— Decimal 1 74

Bits 1 to 6 set the number of rows in the video matrix. Bit is used to

select either 8x8 characters (bit = 0) or 16x8 character matrices (bit

= 1). Bit 7 is the least significant bit of the raster line number found in

control register No. 5.

To demonstrate the use of this register to change the number of lines

displayed on the screen enter and run the following program:

10 FOR 0=128 TO 180 STEP 2

20 POKE 36867,0
30FORX=0TO1000:NEXTX :delay

40 NEXT

O

50 POKE 36867,174 : restore to normal

Control register No. 5.

Location— Hex $9004 Decimal 36868
Contents in normal VIC operating mode— Variable

This register contains the number of the line currently being scanned

by the TV raster beam.

116

Control register No. 6.

Location— Hex $9005 Decimal 36869
Contents in normal VIC operating mode — Decimal 240

Bits to 3 determine the starting address of the character cell space
(note that these bits form lines A13 to A10 of the actual address). Bits

4 to 7 together with bit 7 of control register No. 3., determine the

starting address of the video matrix (these bits form address lines A13
to A9 of the actual address).

Control register No. 7.

Location— Hex $9006 Decimal 36870
Contents in normal VIC operating mode— Decimal

Contains the latched horizontal position of the light pen

Control register No. 8.

Location— Hex $9007 Decimal 36871

Contents in normal VIC operating mode— Decimal

Contains the latched vertical position of the light pen

Control register No. 9.

Location— Hex $9008 Decimal 36872

Contents in normal VIC operating mode - Decimal 255

Contains the digitised value of input on potentiometer No. 1., (see

section on joysticks for details on operation and use).

Control register No. 10.

Location— Hex $9009 Decimal 36873
Contents in normal VIC operating mode— Decimal 255

Contains the digitised value of input on potentiometer No. 2., (see

section on joysticks for details on operation and use).

Control register No. 1 1

.

Location— Hex $900A Decimal 36874
Contents in normal VIC operating mode— Decimal

117

Bits to 6 set the frequency of the first audio oscillator.

Bit 7 turns the oscillator on (= 1) or off (=0).

Control register No. 12.

Location— Hex $900B Decimal 36875
Contents in nornnal VIC operating mode— Decimal

Bits to 6 set the frequency of the second audio oscillator. Bit 7 turns

the oscillator on (=1) or off (= 0).

Control register No. 13.

Location— Hex $900C Decimal 36876
Contents in normal VIC operating mode— Decimal

Bits to 6 set the frequency of the third audio oscillator. Bit 7 turns the

oscillator on (=1)oroff (=0).

Control register No. 14.

Location— Hex $900D Decimal 36877

Contents in normal VIC operating mode— Decimal

Bits to 6 set the base frequency for the pseudo white noise

generator. Bit 7 turns the noise generator on (=1) or off (=0).

Control register No. 15.

Location— Hex $900E Decimal 36878
Contents in normal VIC operating mode— Decimal

Bits to 3 set the volume of the composite audio signal (note that at

least one sound generator must be turned on for any sound to be

produced). Bits 4 to 7 contain the auxiliary colour code used in

conjunction with the 'Multicolour mode' of operation.

Control register No. 16.

Location — Hex $900F Decimal 36879
Contents in normal VIC operating mode— Decimal 27

Bits 4 to 7 select one of sixteen colours for the background common to

all characters on the screen (essentially they set the colour of the

background area within the video matrix). Bits to 2 select one of

eight colours for the exterior border area of the screen, this is the area

outside the video matrix. Bit 3 determines whether the video matrix is

to be displayed as different coloured characters on a common
background colour (bit 3=1), or inverted (bit 3=0) where all

118

characters have the same colour, but different background colours

determined by the code in the colour RAM. Bit 3 has no effect when
the 'Multicolour' mode is selected on the 6561 , the other functions of

control register No. 16., also vary in this mode.

To demonstrate the changing of the border colour (there are eight

different colours) by bits 0-2, run the following program. Note that the

screen colours are retained in their normal mode of blue characters on
a white background.

10FORQ=0TO7
20 PIKE36879,Q+24 :change border colour

30FORX=1TO1000;NEXTX :delay

40NEXTQ
50 GOT0 10

The sixteen different background colours are selected by bits 4-7 and
the following program demonstrates the changing of the background
colour, note the cyan border colour and the blue character colour

remain unchanged.

10FORQ=0TO255STEP16
20 POKE36879,Q+11 :new background colour

30FORX=1TO1000:NEXTX
40NEXTQ
50GOT10

Bit 3 controls whether characters are displayed on a common
background colour, or inverted so that all characters are the same
colour but the background is a different colour. The following short

program demonstrates this.

1 POKE36879,PEEK(36879)AND247 .invert background
20FORQ=-TO1000:NEXTQ :delay

30 POKE36879,PEEK(36879)OR8 : restore to normal

40 FORQ=0TO1000:NEXTQ
50GOTO10

119

6561 DISPLAY MODES

The VIC has two display modes, normal text mode and user

definable character mode. The modes are determined by the position

in memory of the character generator. There are also two modes of

colour operation, high resolution, and multicolour. The VIC is thus

capable of several permutations of colour and display mode.

The two display modes depend on whether the normal internal

ROM based character generator is used or a user definable RAM
character generator. The position of the character generator within

processor memory space is determined by the contents of bits 0-3 of

control register No. 5. These four bits form bits AlO to A13 of the actual

character generator address as follows;

3 2 1

11 Olxx xxxx xxxx

$ 3 4

The normal contents of bits 0-3 of control register No. 5., are zero, the

way the VIC is configured, this gives a character generator address of

Hex $8000 (decimal 32768). Starting at this location is a 4K ROM, the

character generator. This contains the actual dot pattern for each of

the 256 different characters which can be displayed. The 4K character

generator ROM actualy contains two seperate character generators

each occupying 2K of ROM. The first of these two character

generators which starts at address Hex $8000 (decimal 327680

contains the dot pattern for the 128 normal upper case and graphics

characters plus the 128 reverse field versions of the same characters.

The second character generator starts at location $8800 (decimal

3481 6) and is identical to the first except that part of the graphics

character set is replaced by lower case characters. When the second

character set is enabled the VIC will normally display in lower case

characters rather than the normal upper case, upper case will be

displayed with the shift key depressed. The second character

generator can be enabled normally, by pressing the shift key and the

Commodore logo key simultaneously. Alternatively one can change

the contents of control register No. 5., thus;

POKE 36869,242 ;set lower case display mode
POKE 36869,240 ; set upper case display mode

This simply shifts the starting address of the character generator up

2K in memory thereby accessing the second character generator.

120

The character generator starting address in control register No. 5.

can be changed so that the character generator is located in RAM,
thereby allowing user definable characters to be created. The starting

address of the user definable RAM character generator on the VIC can

be any 2K (4K if 8x16 characters are used) block or RAM, located

between address Hex $1000 and $3000. It should be located at the

highest possible address, and protected from being ovenA^ritten by

Basic by lowering the top of memory pointers, to protect the RAM
space used by the character generator. The setting up of control

register No. 5., has the following rules:

1 — The starting address is always located at the beginning of a 1

K

block.

2 — If the contents of bits 2 and 3 are both zero then the starting

address defaults to the ROM at $8000 plus the offset stored in bits

and 1 , this offset is in increments of 1 K.

3 — Bits 2 and 3 contain the starting address in increments of 4K.

Thus to put the user definable character generator to start at 11 K up

in memory, — Hex $2000— 2x 4K block plus 3x 1 K block— then bits

to 3 would be set up as follows:

Bits 3 2 10
Binary contents 10 11
representing 2x4K blocks 3x IK blocks

The user definable character generator is very important, since it

not only allows special graphics characters to be created, but it also

allows high resolution point plotting on the VIC. This allows a graph

or display to be created with a resolution of 176 points in the

horizontal by 184 points vertically, sufficient to give a very good
quality display. High resolution point plotting is achieved by

programming techniques using the user definable character

generator. The use of the RAM character generator must be

understood before these techniques can be explained.

The first stage in creating a user definable character set, is to

allocate a block of RAM memory for storage of the character

generator. If characters on an 8x8 matrix are being displayed then

2048 memory locations are required, if an 8x16 matrix is to be used

then 4096 locations are required. Since a standard VIC has only 3584

121

IIo

+

+

+

+

* _ +

^ _ +

8
¥

-IS

+

+

+
—00
+

+

+

+
—

o

+

+

+
.00

+

+
IS
+

+

+

+
-00

+

+

+

+

•IS

+
•»
+

+
.00

+

+
+

II

+
.IS

+

+
.00

+

+
ts
+

.(S

T
—IS
+

—CM

—

*

+
—oo

+

+

+

+
—ts

CM

II

—ts

+
—eg
+—

*

+
—oo

+

+

ID

Fig. 14 — Conversionof a character into numerical values.

IS

- • • • •
(NJ •
m •

in

(0

r-

•
• i

!• • • •
1

IS

-

rsi • •
m • • • •
"t • • • •
U1 • •
<o

1^
1

s — rg m •* ifl ic — cNj oo ^ in 10 r^

Fig. 15 — Examples of layout in design of characters.

122

RAM memory locations available to the user, an 8x8 matrix user

definable character generator using 2048 of these locations is the only

one feasible. The user RAM on a standard unexpanded VIC starts at

memory address 4096 and goes on to address 7679. The character

generator can be programmed to start at any of the following

addresses within that range; 4096, 5120, 6144, or 7168. Since 2048
locations are required for the character generator the only possible

starting location is 5120, this leaves 1024 bytes free for user programs

(not much, purchase of the standard 3K RAM expansion module is

strongly recommended, it's use will not change the start address

recommended above). This area of RAM chosen for use by the

character generator must be protected from being ovenA^ritten by a

Basic program or data. If this happened the display would be

destroyed. The user definable character generator can be protected

from being overwritten by lowering the top of memory pointers,

thus:

10 POKE 51,255 : POKE 52,19

11 POKE 55,255 : POKE 56,19

12CLR

The next stage is to put the data on each character into the new
character generator, by using POKE commands or machine code load

statements to put information into the 2048 memory locations.

Before this can be done each of the new characters must be designed,

this entails drawing each character on an 8x8 grid, see Fig.15. Once the

character has been designed it can be converted into the block of

eight numerical values for storage in the character generator. Each

line in the 8x8 grid corresponds to a byte of data, and each of the eight

bits in that byte corresponds to a dot or column position on that line.

Information is stored in memory in binary, thus by considering each

bright dot to be a logical '1' and each space a logical '0', a line of dots in

each character can be converted into a numerical value, the way this is

done is shown in Fig.14. Some examples of character designs and their

conversion to numerical values are shown in Fig.16. From these values

a table can be created, one column having the character generator

address, and the corresponding entry in the second column having

the value to be put into that location. The table is divided into blocks

of eight entries, each block containing the data for one character. Each

of these blocks of eight entries is numbered starting at and going up

to 255. These numbers correspond to the ASCII or character code
numbers stored in the video RAM when the characters are displayed.

An example table using the character designs in Fig.15, is shown in Fig.

123

7 6 5 4 3 2 1 01

1

2 • •
3 • • • •
4 [• • • • • •
5

6 • •
7 • •

->0 + + + +0+0+ 0+51-0
-0+ +0+16+8+ + + 0-24

-0+ 0+32+16+3+4 + +0-69
-0+64+32+16+8 + 4 + 2 + 0-126

-128+64+32+16+8+ 4+ 2 + 1 -255

-0 + + 0+16+8+ + +0-24

-0 +0+32+0 + + 4 + + 0-36

-0+64+0+ + + + 2 + 0-66

7 6 5 4 3 2 10
-0+ + 0+16+8 + + + 0-24

-0 + + 0+16+0 + 4 + +0-20

-0 + + 0+16+0 + 4 + +0-20

-0+ + 0+16+0 + + 2+0-18

-0+ 0+32+16+0 + + + 0-48

-0+64+32+16+0 + + + 0-112

-0+64+32+0+ + + + 0-96

-0+0+0+0+0+0+0+0-0

5120-
5121 - 24

5122- 60

5123 - 126

5124- 255

5125- 24

5126- 36

5127 - 66

5128- 24

5129- 20

5130- 20

5131 - 18

5132- 48

etc.

Character#1

Character#2

Fig. 16 — Conversion of user characters into a character generator table.

124

16. The table need only contain the number of characters actually

required, all 255 possible character blocks do not have to be filled in. It

is advisable that the table starts at the first location in the character

generator, any gaps left should be filled with zeros. If the character

generator is being loaded fronn a Basic program then the values in the

tables are best stored as DATA statements, these values are then
entered into memor/ using POKE commands, thus:

20 FOR 1=0 TO 2048
21 READ A
22IFA="»"THEN30
23 POKE 5120+ I,

A

24 NEXT
30 END

1 00 DATA 24, 20, 20, 28, 48, 112, 96,

1 1 DATA 0, 24,60, 1 26, 255, 24, 36, 66
1 20 DATA 255, 1 26, 60, 24, 24, 60, 1 26, 255

130 DATA*

In the majority of applications alphanumeric characters are

required in addition to user defined graphics characters, in such cases
part of the data in the ROM based character generator must be
transferred to the new RAM character generator. All the alphanumeric

characters plus the VIC graphics characters (or lower case depending

on which of the two character generators is accessed) are contained

in the first 128 characters of the character generator, the remaining

128 characters are the reverse field versions of the first 128 characters.

The first 128 characters of the ROM character generator are transfered

to the new RAM character generator using a combination of PEEK and
POKE commands thus;

20 FOR 1=0 TO 1024
30 POKE 5120+1,PEEK(32768+I)

40NEXTI

This leaves 128 possible user definable characters starting at

address 6155, these characters can be filled as described above, and
will have an ASCII code starting value of 128. An example of the

routine to enter the character generator data will be as follows

:

20 FOR 1=0 TO 1024

21 POKE5120=I,PEEK(32768+I)
22 NEXT!

125

30 FOR I =0101024
31 READ A
32IFA="'K'THEN200 ''

33POKE6144=l,A
34 NEXT

60 REM DATA FOR ASCII CODE CHARACTERS 128, 129, 130

1 00 DATA 24, 20, 20, 1 8, 48, 1 1 2, 96,

1 1 DATA 0, 24, 60, 1 26, 255, 24, 36, 66

120 DATA 255, 126, 60, 24, 24, 60, 126, 255

130 DATA* ;. <•

Having loaded the user definable character generator it can be used,

it will rennain in the VIC until the machine is switched off and can thus

be used by nnore then one program. To use the RAM character

generator two of the 6561 registers must be changed, thus:

200 POKE 36869, 253

210 POKE 36866, PEEK(36866)OR128

Once the user definable RAM character generator has been set up

and the 6561 registers changed to utilise the new character generator

it can be used to generate special displays. If POKE commands are

used to place the characters in the video RAM memory then the ASCII

code value of the new characters is used. If the new characters are

incorporated into strings then it is essential to know which character

in the normal character set the new character replaces. This can be

determined by using the table of VIC ASCII codes and looking for the

character with the same code value as the new character. When the

program is written the normal characters are inserted into the string,

when the program is run they will be automatically replaced by the

new characters. It is important to note that when using POKE
commands, the colour RAM location corresponding to the location

where the character is to be displayed must also be set to give the

required colour, otherwise the display will be white on white and

therefore invisible. To restore the normal function of the VIC ROM
character generator use the following two lines:

500 POKE 36869,240

510 POKE 36866,150

High resolution point plotting uses exactly the same principles as

the generation of user definable characters. It entails filling the video

RAM with each of the 255 character codes (only half the screen can be

used with 8x8 characters). The RAM character generator can then be

126

used as a high resolution memory mapped display. If all bytes in the

RAM character generator are set to zero then the screen is blank. Set

one bit in one of the characters and a single high resolution dot will

appear on the screen. The relationship between a single dot on the

screen, the locations in the RAM character generator, and the code

value in each of the video memory locations is shown in Figure 17.

Showing that the basis of high resolution plotting is simply filling the

video RAM corresponding to the screen area of the high resolution

display with successive and incremented code values. The rest is a

matter of calculation to ensure that the correct bits are set in each of

the eight bytes corresponding to each of the character codes used in

the video RAM. A high resolution plotting program consists of two

parts, the initialisation and the point plot subroutine. The

initialisation sets up the registers of the 6561 for a user definable

character generator, lowers the top of memory to protect that

character generator, puts the correct data into the video and colour

RAMs and clears the contents of the RAM character generator. The

point plot subroutine is called whenever a point is to be plotted or

erased, and consists of a routine which calculates from given X and Y
co-ordinates which bit in which byte of the RAM character generator

is to be set or erased. It should be noted that the area of the screen

devoted to high resolution plotting can vary from just a few adjacent

character spaces to the whole screen (to do this the 6561 is initialised

to display 8x16 characters rather than the normal 8x8, this requires

the RAM character generator to be enlarged to 4K. An example of a set

of Basic routines to plot points in high resolution, plus lines and

circles, is contained in the following program (these routines use a 2K
character generator and 8x8 characters so the display occupies only

half the screen, the 6561 registers have been used to centre the

display).

127

c

CD

u
2
CO
£:

O

00

s 9£ % s SI U S

—
1 1 1 1

^
^$^$^,^§S —
m

^ ^
^ ^

—
d ^ —
§SSS^^.^

1 _

<e = *
o o-a, aj

Soot's

,< CO CO -r

n
— — —

-V-

\

\

—

t

c
o

a
<uaa
CO

E

<

O
d)
T3

(0

CN .E

Fig. 17 - Relationship between the character generator, video matrix,

and the displayed character. 128

1 REM *****************.***•**********.********•**
2 REM *PROGRflM TO PLOT THE GRfiPH OF R FUNCTION
3 REM *IN HIGH RESOLUTION ON THE VIC
4 REM mmmmmmmr^.mmmw.mmw.mmmmm
5 REM
6 REM * INITIALISE 6561 REGISTERS
? PR I NT "an"
8 P0KE36S67.. 12S
9 POKE36865..60
1 F C8 ::• =0

: F < > = 1 28 •• F (1 >=64 •' F <2 > =32 •' F C3 :• = 1 f.

20 F';:4>=8:F'::5::'=4:F'::6>=2:F''7>=1
30 FORQ=0TO255
32 POKE76S0+Q.. Q
34 POKE38400+Q .

2

36 NEXTQ
40 P0RQ=5 1 20TO5 1 20+255*8
42 POKEQ .

44 NEKTQ
45 P0KE36869.. 253
46 F0K'E36366 .. PEEK (36866 >OR 1 28
4? P0i<E36Sb7,. 150
60 !<E-1

61 REM *PLGT GRftPH OF FUNCTION IN LINE 30
62 REM
80 rORC=8T0175 ^ .

30 L=45+40*SIN<C/10>
91 REM":' />

92 REM *HIGH RESOLUTION POINT PLOT ROUTINE
93 REM
100 R=5120
lis LR=L/8
120 Lfl=INT<LR>
130 R=fl+<:LFi*176>
140 LR=<LR-Lfl>*8
300 CR=C.-'8
310 Cfl=INT<CR::'

320 R--fl+':;Cfl*8>

325 H=fi+LR
330 CR=INT<<CR-Cfl)*8>
400 POKEfl .. PEEK >: fl) ORF (CR >

129

500 NEXTC
550 REM
551 REM *WaiT FOR KEV PRESS THEN RETURN
552 REM ^SCREEN TO NORMAL.
553 REM
600 GETft* : I Ffl$= "

" THEN600
1000 P0KE36SS3 .. 240
1010 P0KE36866.. 156
1020 P0KE36867.. 174
1 030 P0KE36365 .. 58

1 REM ******#**********.*********************
2 REM ^PROGRAM TO PLOT HIGH RESOLUTION
3 REM *POINTS. LINES flND CIRCLES ON THE VIC.
4 REM mmmmmmmmmmmmmmmmw.mm*
5 REM
6 REM ^INITIALISE 6561 AND CHAR GEN
7 REM
8 P0KE36867. 128
3 POKE36865.60
10 F<8>=0 : F<0>=12S : F< 1 >=64 : F<2::'=32

20 F<3>=16 ' F<4>=8 : F<5>=4 :
F'::6::i=2 F<7>=1

35 FORQ=0TO255
37 POKE7680+Q..Q
38 POKE3S400+Q..2
39 NEKTQ
40 F0RQ=5 1 20TO5 1 20+255*8
41 POKEQ.0
42 NEKTQ
45 P0KE36869.253
46 P0KE36S66 .. PEEK (.36866 > OR 1 28
47 P0KE36867.. 150
90 REM
91 REM *riATA FOR LINE DRAWING
92 REM *START AT COORDINATES Ki..Vl

93 REM *END AT COORDINATES X2..V2

94 REM
100 READK1..V1..K2.V2

130

105 IFK1=255THEN200
110 GCISUE1000
120 GOTO 100
150 DflTfl 80.. 10.. 100.. 40
1 5

1

DflTfl 80 ..10.. 60 .. 40
152 DflTfl 95.. 38. 95.. 80
153 DflTfl 65. 38.. 65. 80
1.54 DflTfl 65 ..80 ..95 ..80

155 DflTfl 85. 80.. .95.. 60
156 DflTfl 90.80.90.60
157 DflTfl 85.60.90.60
158 DflTfl 70.75.70.60
159 DflTfl 75.75.75.60
160 DflTfl 70.75.75.75
161 DflTfl 70.60.75.60
162 DflTfl 70.50.70.35
163 DflTfl 75.50.75.35
164 DflTfl 70.50.75.50
165 DflTfl 70.35.75.35
166 DflTfl 85.50.85.35
167 DflTfl 90.-50.90.35
168 DflTfl 85.50.90.50
169 DflTfl 85.35.90.35
170 DflTfl 20.80.20.50
171 DflTfl 22.80.22.50
172 DflTfl 120..S0.120.50
173 DflTfl 122.80.122.50
188 REM *END OF LINE DflTfl

189 DflTfl 255.255.255.255
190 REM
191 REM .*DflTfl FOR DRflWIHG CIRCLES
192 REM *CENTRE AT COORDINATES CK.CV
193 REM *RflDIUS R
194 REM
199 DflTfl 255.255.255.255
200 CX=2 1 CV=40 : R= 1

210 GOSUB3000
220 CX=121:CV=35:R=15
230 GOSUE3000
240 GETfl* : IFfl*=

"
" THEN240

131

1?U0 REM *LINE DRflWING ROUTINE

1020 REM •*USES I'flTfl FROM LINE DfiTH ThBLE

1030 REM
1200 Kri=X2-Kl

1210 VD=V2-V1
1230 fl0=i :fll=l

1240 IFVIi<0THEHfl0=-l

i-:;'50 IFXlK:0THENfll=-i ..^ ,,^

l5?0 i:E=flBS(XIO ^ VE=flBS<VD> :r-l=KE-VE

1280 IFD1>=0THEN1320
_

1 09& S0=- 1 -3 1 =0 : LG='t'E : bH=.«.E

1300 IFVB>=0THEHS0=1
1310 GOTO 1340 ,_ ,,^
1 -^20 S0=0 : S 1 =- 1 : LG=KE

:
bH= t E

1330 IFXIi:>=0THENSl = l

1340 REM -^ , - ,-ij •-.

1 350 TT=LG • TS=SH : UIi=LG-bH :
L:R=Lb-bH.- ^

1355 ri=0

1360 REM
1370 C=X1 : L=V1 : GOSIJBiil0y

1-^80 IFCT>=0THEN1420
111© CT=CT-HTS:Xl=XH-Si:Vl=Vl+S0

1410 GOTO 1460
1420 r:T=CT-UB-Xl=Kl+Fll =V1=V1+HW

1460 TT=TT-1
1470 IFTT<:0THEHRETIJRN

1480 GOTO 1370
"'000 REM
2010 REM *POINT PLOT ROUTINE
c.0;.0 REM *USED BV LINE flNB LlRi-LE DRhW

^0:^0 REM *ROUTINES
•?040 REM *C=K COORBINfiTE

2050 REM •*L=V COORBINflTE

2060 REM
2100 R=5120
2110 LR=L/"8

2120 Lfl=INT<LR>
2130 fl=fl+<LFl*l76>
:-14Pi LR=':;LR-Lfl>*8

132

2300 CR=C/8
2310 Cft=INT<CR>
2320 ft=ft+<:CFl*8>

2325 fl=fl+LR

2330 C:R= INT < < CR-Cfl)*8 >

2400 POKEfl , PEEK (. ft >ORF < CR >

2500 RETURN
2600 GETfl$:IFflf=""THEN2600
3000 REM
3001 REM *CIRCLE DRflWING ROUTINE
3002 REM *0X RND OV ARE OFFSET VflRIflELES
3003 REM *WHICH DETERMINE WHETHER ft CIRCLE
3004 REM *0R EL IPSE IS DRAWN
3005 REM
3010 0X=1 :0V=1.2
3020 lil=2*ir

3030 N=100
3040 INC=';fl-0>/N
3050 FORI=0TOFlSTEPINC
3060 J<:=R*S INa > : K= INT < H'*OK+CX+ . 499 >

3070 V=R*COSa)
: V= INT <V*OV+CV+ . 499 >

3080 L=V •• C=X G0SUB2 1 00
3090 NEXT

I

3100 RETURN

133

DISPLAY FORMAT CONTROL

The standard display format of the VIC is a video display with 22

characters horizontally and 23 lines vertically, with each character

consisting of a matnx of 8x8 dots. All these values, together with he

position of the text area in the screen, can be changed by altenng the

contents of specific registers of the 6561. There are five screen format

variables which can be changed by the user, they are:

1 — Position of the first column of characters from the left hand

side of the screen. This can be changed by altering the contents of

control register No. 1.. at location 36864, the normal value in this

register is 12. By increasing the value in the register by two the

position of the first column of characters is moved to the right by one

character space. The minimum value in 36864 is 0, this puts column 5

of the display area on the left hand edge of the screen, the maximum

value depends on the screen width and varies from 22 with a screen

width of 22 character to 64 with a screen width of 1 column.

2 — Position of first row of characters from the top of the screen.

This can be changed by altering the contents of control register No. 2.,

at location 36865, the normal value in this register is 38. By increasing

the value in the register by four the display area is ^o^^d down fronn

the top of the screen by one line. The minimum value in 36865 is and

the maximum value 255, a value of greater than 130 will cause the

display to disappear off the bottom of the screen and can be used as a

means of screen blanking.

3 — Determine the number of rows in the display. The number of

rows displayed is determined by the value stored in bits 1 to 6 of

control register No. 4., located at 36867, the normal value in this

register is 174 The value stored in this register is obtained by

multiplying the desired number of rows by two and adding the result

to the value 128. The minimum number of rows is 1 (register value

130) and the maximum number of rows displayable is 32, — this is

only achievable if the screen width is reduced so as not to exceed the

506 bytes in the video RAMs (register value for 32 rows is 192 .

Changing the number of rows in the display to other than 23 will

disrupt the operation of the screen editor,

4 — Determine the number of columns in the display. The number

of columns displayed is determined by the value stored in bits 1 to 6 of

control register No. 3., located at 36866, the normal contents is 150.

134

The value stored in this register is obtained by adding the minimum

number of columns desired to the value 1 28. The minimum number of

columns is 1 (register value 1 29), and the maximum number is 27

(register value 1 55) this is only achievable if the number of rows is

reduced so as not to exceed the 506 bytes in the video RAMs. Changing

the display width to a value other than 22 characters will disrupt the

operation of the screen editor.

5 — Determine the size of each individual character matrix. All

characters are normally displayed as a matrix of 8x8 dots on the

screen, but changing the value in bit of register No. 4., location

36867, allows this to be changed to an 8x16 matrix. Add 1 to the

current contents of this register and the character size will be doubled

so that it is 16 dots high and 8 dots wide. Return to normal by

subtracting one. The larger size character matrix is required in high

resolution point plotting -in order to fill the whole screen with the 255

characters of the character generator mennory.

135

VIDEO MEMORY ADDRESS CONTROL

Three areas of processor memory space are required by^^e 6561 in

aHdition to the memory locations occupied by the 6561 control

rea s e"s These th7ee memory areas are video RAM, colour RAM and

character generator. Of these three the location of the video RAM and

the character generator are variable and under control of registers in

the 6561 The starting locations of these tv.o blocks of mennory are

ItorPri in control register No. 6., location 36869, plus bit 7 of control

Sgste No 3 oSro"%6866. Both addresses are stored in register

N? 6 as the most significant four bits of a 14 bit address bit 7 of

control register No. 3 is address line 9 of the video RAM address.

Their use is best illustrated by the following sample:

Control register No. 3. 1 x x x x x x x

Control register No. 6. 110 1

14 bit video RAM address is:

CR No. 6 bits CRNo.bit

76 547 xxxx xxxx
binary- 1 x x x x x x x^x x

hex— 2

1 4 bit character generator address is:

CR No. 6 bits

3 2 10
binary- 11 Olxx xxxx x x^x x

hex— d '+

In this example the video RAM is located at Hex $0200 and the

character generator at $3400. The starting position is incremented in

lumps of IK for the character generator and 512 bytes for the video

RAM The addressing range of both the character generator and the

video RAM are both limited since to access all the processor memory

space requires a16 bit address. This limitation is partly overcome by

using hardware addressing, thus the character generator start

address defaults to $8000 when the contents of all four address bits in

CR No. 6 which control this address are zero.

136

COLOUR CONTROL

The VIC has two modes of colour operation, 'High resolution' nnode
and 'Multicolour' nnode. The operating mode employed plus the
colours used are determined by the contents of control registers No.
15, and No. 16., of the colour video RAM. The colour video RAM is

located in a 506 byte block or memory starting at location $9600
(decimal 38400), if there is more than 8K of user memory then the
starting location of colour RAM moves down to $9400 (decimal

37888). The colour video RAM is only four bits wide, bits 0-2 are used
to select the character colour and bit 3 is used to determine if that

character is in 'high resolution' or 'multicolour' mode.

The 'High resolution' mode is selected by having bit 3 of the video

colour RAM set to zero, this is the normal mode of operation. In this

mode there is a one to one correspondence between character

generator bits and the dots displayed on the screen. This means that

all 'one' bits will be displayed as dots of one colour and all 'zero' bits as

dots of another colour. Each character has two colours, a foreground

(all the 'one' bits) and a background colour (all the 'zero' bits). One of

these colours is determined by the first three bits of the video colour

RAM and the other by bits 4-7 of control register No. 16. In normal
operation the foreground colour is stored in the video colour RAM and
the background colour which is common to all characters displayed

on the screen is stored in register No. 16. This can be reversed so that

all characters have the same foreground colour which is determined
by register No. 16., and different background colours set by the

contents of the colour video RAM. Whether a common foreground or

a common background is selected depends on the contents of bit 3 of

control register No. 16. If bit 3 is set to 1 then the display will have
different coloured characters on a common background colour, if bit

3 = then all characters will have the same colour against a different

colour background. In addition to the foreground and background
colours the 6561 allows the colour of the border around the display

area to be changed, this is selected by bits 0-2 of control register No.

16.

The colours which can be displayed on the VIC are divided into two
groups. The first group has eight colours, these colours can be used
for the foreground or video colour RAM stored colour, and the border.

The second group has sixteen colours which can be used for the back-

ground colour, (stored in control register No. 16.). and for the auxiliary

colour (this is only used in the 'Multicolour' mode). The colours

available in each of the the groups are as follows:

137

Auxiliary/Background

Colours

Border/Character

Colours

Black

White

Red
Cyan

Magenta
Green

Blue

Yellow

Black

1 White

2 Red
3 Cyan

4 Magenta

5 Green

6 Blue

7 Yellow

8 Orange

9 Light Orange

10 Pink

1

1

Light Cyan

12 Light Magenta

13 Light Green

14 Light Blue

1

5

Light Yellow

In summary: in 'High resolution' mode the colours used for a

particular character are:

1 - Set bit 3 of register No, 16., for common background or

TormtSgrold-POKE36B79,PEEK(36879)A^^^^^^^^
common background- POKE 36879. PEEK(36879)OR8

2 - Set the common background/foreground colour in bits 4-7 of

rontral reaister No. 16. There are sixteen possible colours, it is the

00 r number as shown in the above table which is stored in the

register, as in the following example where vanable C is the colour

and is set to a value between and 1 5:

POKE 36879,PEEK(36879)AND1

5

POKE 36879,PEEK(36879)OR(C*16)

return to normal with— POKE 36879,27

3 - Set the border colour in bits 0-2 of control register No^ 16.

There are 8 possible border colours and it is the colour number shown

[n the above Sble which is stored in the register, as ,n the following

example where vanable C is the colour and is set to a value between

and 7

:

138

POKE 36879, PEEK{36879)AND248
POKE 36879, PEEK(36879)OR

4 — Put the colour code for each character to be displayed into the

corresponding location in the colour video RAM. There are eight

possible character colours, see above table, they are stored in bits 0-2

of the 506 locations in the colour video RAM. This is done
automatically in a PRINT statennent where the character colours can

be embedded in the string as colour commands. If POKE commands
are used to put characters into the video RAM then the colour code
must also be POKEd into the corresponding location in the colour

RAM. Given the column number— COL, and the line number- LIN, of

the display plus the ASCII code of the character — A, and the colour

code for that character — C, the follov^/ing routine will put the

character and its colour into the correct locations in the two video

RAMs:
100Q = LIN*22+COL
110 POKE 38400+Q,C
120 POKE 7680+Q,A

The 'Multicolour' mode is selected by having bit 3 of the video

colour RAM set to one. In this mode there is a two to one
correspondence between character generator bits and the dots

displayed on the screen. This means that two bits of the character

generator matrix for that character code correspond to one dot on the

screen, and the colour of that dot is determined by the two bit code in

the character generator. Unlike the 'High resolution' mode in which

only two colours can be displayed for each character, 'Multicolour'

mode allows four colours per character. However, since two bits of

character generator data correspond to a single dot on the screen the

horizontal resolution is half that of the 'high resolution' mode. That is

each 8x8 character cell in memory maps onto an 8x4 character on

screen (8 lines of 4 dots). Each character occupies the same space in

either mode since both modes can be intermixed in a display,

meaning that a single dot in 'Multicolour' mode occupies the same
space as two horizontal dot positions in the 'High resolution' mode.

The amount of memory required for storage of the 8x4 'multicolour'

characters is the same as that required for the 8x8 characters, the data

is simply mapped differently on screen.

The 'Multicolour' mode is not suitable for use with the ROM based

character generators but can be very effective when used with a user

139

definable RAM character generator. This is because the ROM

character generators are designed for 'High resolution' mode displays

where each bit in the character matrix represents a dot position on the

screen In 'Multicolour' mode the character generator contains the

colour of each dot by using two bits to represent each display dot.

With a ROM character generator most characters will thus appear as

an array of different coloured points rather than a character. See the

section on "6561 Display Modes" for information on the use of user

definable RAM character generators and high resolution point

plotting.

In 'Multicolour' mode the two bits of the character generator

character matrix which represent each screen dot select one of four

colours for that dot. The four codes created by these two bits tell the

6561 where to find the colour information for the dot. The two bit code

is not itself a colour code, it is simply a pointer to four different colour

codes, giving greater flexibility, as each code pointed to has either 6

or 4 bit resolutior^. The use of a simple two bit pointer, combined with

bit 3 of the colour video RAM being used to determine the colour

display mode means that it is possible to freely intermix High

resolution' and 'Multicolour' characters in a display. The colour of the

dot can be either the background colour, the foreground colour, the

exterior border colour or a special auxiliary colour (information on

which is stored in bits 4-7 of control register No. 15.). The Multicolour

mode select codes are:

— Background colour

1 — Exterior border colour

1 — Foreground colour

1 1 — Auxilian/ colour

The use of the 'Multicolour' mode can be summarised using the

following example:

1 _ Set the background colour to one of 16 colours, this colour

code is stored in the following example in variable C which will have a

value between and 15:

POKE 36879,PEEK(36879)AND1

5

POKE36879.PEEK(36879)OR(C*16)

2 _ Set the exterior border colour to one of 8 colours, this colour

code will have a value between and 7 and in the following example is

stored in variable C:

140

POKE 36879,PEEK{36879)AND248

POKE 36879, PEEK(36879)ORC

3 — Set the foreground colour to one of 8 colours by POKEing the

colour code into the colour video RAM location, corresponding to the

location of the displayed 'Multicolour character. Since it is bit 3 of the

colour video RAM which determines v^/hether a character is displayed

in 'High Resolution or Multicolour mode then 8 should be added

to the colour code values for all characters to be displayed in

'Multicolour mode.

4 — Set the auxiliary colour code to one of 16 colours, this colour

code will have a value between and 15 and in the following example

is stored invariable C:

POKE36878,PEEK(36878)AND15
POKE36878,PEEK{36878)OR(C*16)

NOTE: Bit 3 of control register No. 1 6 has no function in 'Multicolour

mode but should be set to the normal value of 1, unless otherwise

required when intermixing both colour display modes.

5 — Set up the character generator matrix for each character to be

displayed. thus

X':

bit

byte 7 6 5 4 3 2 1

1 1 1 1

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4
5 1 1 1 1

6 1 1 1 1

7 1 1 1 1 1 1 1 1

Hex Location

IB 5120

:

IB 5121,1

IB 5122,;,

IB 5123, ;

00 5124,

55 5125.

AA 5126.

FF 5127,

This example is for a character in a user definable character generator

starting at location 5120, the character has a code value of and

shows each of the four colours available in multicolour mode

characters thus:

141

byte

1

2

3

4

5

6

7

Hex Location

IB 5120

IB 5121

IB 5122

IB 5123

00 5124

55 5125

AA 5126

FF 5127

m

142

Sound Locations

The sound locations must be POKEd with numbers between 128

and 255. The frequency rises as the number, with the exception of 255

which is a low frequency. Each tone location produces one voice. A

in any byte will turn that voice off. The following decimal codes

produce an approximation of three octaves of the even-tempered

musical scale. The scale is relative, not absolute concert pitch. This

table lists the musical note and its respective POKE location.

Poke locations of Musical Notes

Musical Note Poke

C 128

C* 134

D 141

D* 147

E 153

F 159

F* 164

G 170

G* 174

A 179

A# 183

B 187

C 191

C*' 195

D 198

D«' 201

E 204

F 207

F*^ 210

G 213

G*** 215

A 217

A# 219

B 221

C 223

C# 225

D 227

D* 228

E 230

F 231

F# 232

G 234

G# 235

A 236

A# 237

B 238

C 239

C# 240

143

THE 6561 SOUND GENERATORS

The sound effect or music generation capabilities of the VIC are

controlled by five registers in the 6561. Four of the registers are

associated with sound generation, the fifth controls the volume of the

sound output Each of the four sound generation registers has an

associated oscillator, the register contents determine the frequency

of the oscillator output. The frequency is determined by varying the

nulse width the output from all four oscillators is a symmetncal

square wave The outputs are combined to give the audio input to the

TV display where the sound is generated via the TV speaker. One of

the four audio oscillators acts as a variable frequency noise source

and the other three generate a simple tone. The five control registers

used are;

Audio oscillator No. 1. - control register No. 11., location 36874^

Bits 0-6 control the frequency, bit 7 turns the oscillator on (=1) or oft

(=0) Low base frequency, thus = value of 128 put in this register will

produce the lowest frequency sound of any of the three audio

oscillators.

Audio oscillator No. 2. - control register No. 12., location 36875^

Bits 0-6 control the frequency, bit 7 turns the oscillator on (=1) or oft

(=0). The base frequency for this oscillator is between that for audio

oscillators No. 1 ., and No. 3.

Audio oscillator No. 3. — control register No. 13., location 3687a

Bits 0-6 control the frequency, bit 7 turns the oscillator on (=1) or oft

(=0). This has the highest base frequency of the three oscillators.

Noise generator — control register No. 14, location 36877. Bits 0-6

control the base frequency of the noise generator, bit 7 tums it on

(=1) or off (=0) This is a pseudo white noise generator, giving a

random sequence of pulses with a frequency determined by the

contents of the control register.

Volume control — control register No. 15., location 36878. The

volume of the composite audio signal produced when one or more of

the four audio oscillators is turned on is controlled by bits 0-3.

Each of the audio oscillators is capable of generating 128 different

frequencies and each oscillator is different, thus oscillator No. 1., can

144

be described as a 'base' sound generator, No. 2., as a 'Tenor' and No.

3., as a 'soprano'. The combined audio output has one of sixteen

volume levels.

The four sound generators can be used to create a wide range of

sound effects for use in games programs, they can also be used to play

music. Writing routines to create sound effects is simply a matter of

experimentation. Try to analyse the required sound and then re-create

it using a combination of the four audio oscillators and the volume

control, this is demonstrated in some of the following examples:

^ K'EM *MFIKES fl SOUND LIKE THE SINGING
S REM .*0F BIRDS
7 REM
10 P0KE3S87S.. 15
20 FORL=1TO20
30 FORr'1=254TO240+ 1 NT <RND < 1 > * 1 8 >STEP-

1

40 P0KE36876..M
58 NEKTM
S0 POKE36876..0
7& FORM=0TO I NT <RND i 1 > * 1 00 > + 1 20
80 NEKTM
90 NEKTL
100 GOTO 10

•^. REM*MflKES Fl SOUND LIKE THE RINGING OF

S REM*:R TELEPHONE
7 REM
10 P0KE36878.. 15

20 F0RL=iT05
30 FORM=1TO50
40 P0KE3687b.. 230
50 F0RN=1T05
o0 NEKTN
70 P0KE36876 .•

30 NEKTM
=f0 F0RM= 1 TO3000
100 ne:^tm
110 nektl
120 POKE36S78..0

145

1 REM *MflKES ft SOUND LIKE fl OaLLOPING
2 REM *HORSE. THE SOUND RECEDES INTO THE

3 REM *D I STANCE.
4 REM
1=^ FORK=15TO0STEP-1
6 F0RZ=1T04
7 fl=60

10 P0KE36878..K
20 POKE36876.230
30 P0KE3S876 ..

40 FORQ=lTOfl:NEKTQ
=^0 POKE36876..230
60 POKE36876..0
70 FnR0= 1 TOfl • NEXTQ
i 1 P0KE36878 .INT < X/2

>

120 POKE36876..230
130 P0KE36876..
140 FORQ=lTOfl:HEKTQ
150 P0KE36876.. 230
160 POKE36876.'0
1 70 FORQ= 1 T04*FI : NEXTQ
180 NEKTZ
190 NEXTK

1 REM *MflKES fl SOUND LIKE THE TICKING OF

2 REM *fl GRANDFATHER CLOCK
3 REM
5 fl=700
10 P0KE36878.. 15

20 P0KE36876.. 230
30 POKE36876..0
40 F0RQ=1T0A- NEXTQ
50 P0KE36876.236
60 P0KE3bS7€...

70 F0Ri3=lT0A-NEKTQ
30 GOTO20

146

S REM *riflKES fl SOUNB LIKE THE BREAK ING
f. REM *0F WAVES OH fl SEASHORE
7 REM
10 P0KE36877.. 180
20 FORL=1TO10
:"^0 D= I NT <RND < 1 > *5 > *50+50
40 F0RM=3T015
50 P0KE36878..M
60 F0RN=1T0D
70 HEXTN
80 NEKTM
90 F0RM=15T03STEP-1
100 P0KE36878..M
110 F0RN=lT0ri
120 HEXTN
130 HEXm
140 NEKTL
150 POKE36873..0
160 POKE36877..0
200 GOTO 10

Using the audio generators on the 6561 to play music requires some-

thought otherwise the result will sound very abrasive and not very

satisfactory. The first problem is that the square wave output from

the audio oscillators produces a rather unpleasant set of harmonics

which gives the note a rough sound. Only external electronics can

change the shape of the waveform, but by using two audio oscillators

to produce the same note of frequencies about an octave apart a

more pleasing sound is produced. The second problem is to generate

the correct attack and decay for the instrument, this is done by

changing the amplitude of the output during the generation of each

note. These two ideas are illustrated in the following program which

plays scales, the sound resembles a piano.

147

Kl.-.u.,, *PLflVS fl REPEATING OCTFlVE SCALE

- REM *THE SOUND OF EACH NOTE DECAYS AND

^: REM #THUS sniJNDS MORE LIKE A PIANO THAN

4 REM *AN ELECTRIC ORGAN

5 READA : I FA= leOTHEN 1 58

10 P0KE36874.. A
2fH P0KE36875..A
30 FORG!=i5TO0STEP-l
40 P0KE3S878 . Q

50 FORK= 1 TO50 : NEKTX
60 NEKTQ
100 G0T05
Ififl RESTORE : G0T05 . __
200 DATA223 . 227 .. 238 .. 23 1 .. 2:34 .. 236 .. cijy .- c:jy

210 DATA233.238.236.234.23i.2;:!0.i;2^.ii.i3.i00

To play a musical score requires a note table, this table contains

each note in the score in the form of the value to be placed into the

audio oscillator register and the duration of that note.

148

h-
cc
O
CL

DC
UJ
CO
Z)

LU

152 - Vic I/O Ports and the 6522

160 - Operation of I/O Ports

164 - Interval Timers and Counters

of the 6522

173 - Shift Register of 6522

177 - Interrupts

181 - Function Control

Q
<
<
>
CN
CM
LO
CO

LU
X

150

iU.

n

.

< a
t-
oc

O
a. X

o

z
tf)

TT

A

V

Fig. 18 — Block diagram of tlie 6522 Versatile Interface Adapter chip.

151

THE VIC I/O PORTS AND THE 6522.

The VIC communicates with the user, and with peripheral devices,

via three integrated circuits. The most important of the three is the

6561 VIC chip, looked at in detail in the previous section. The chip

controls the video display, sound generation plus the penpheral

devices, a light pen and a joystick. The other two integrated circuits

are 6522 Versatile Interface Adapters or VIAs and these are used to

perform all other I/O functions of the VIC. We can summarise the

function of these two chips as follows;

Keyboard input

User port

Cassette deck

Serial I/O— cut down IEEE 488 port

RS232 I/O— for printers modems etc.

Restore key (NMI line)

Joystick— simple switch type

Light pen control

IRQ timing for real time clock and keyboard

The two VIA chips which are used to control all these functions have

between them just 32 programmable I/O lines and eight handshake

lines. Many of these lines are used by more than one of the above

functions.

An understanding of the two 6522 VIA interface chips is essential if

all the features of the VIC are to be used to the full, and a knowledge of

these chips helps to explain some of the quirks of the system. The

functioning of these chips is controlled by internal programmable

registers there are sixteen registers in each chip. These 32 registers

(sixteen from each chip) are located in addressable ^emo-Y space and

are located at hex $9110 - $91 2F (decimal 37136 to 37168). They can

thus be accessed from Basic using PEEK and POKE statements and

from machine code using LDA and STA commands.

Of the 40 I/O lines output from the two VIA chips, the user can

directly connect equipment to, and control the functioning of, 23

lines the other 17 lines are used by the keyboard and are not therefore

usable. All but one of the I/O lines on VIA No. 1 .. can be used, bu only

five of the lines on VIA No. 2., VIA No. 1., is thus used in all the

examples in this section. The functions of each I/O line frorin the wo

VIA chips is shown in Figure19,the electrical connections which allow

the user to utilise some of these lines is shown in Figures 20 to 24

152

RESTORE

SERIAL CLK (IN)

SERIAL DATA (IN)

XY0
JOY 1

JOY 2

LIGHT PEN
CASSETTE SWITCH
SERIAL ATN (OUT)

CASSETTE MOTOR

CASSETTE READ

ROW
INPUT

SERIAL CLK (OUT)

CB1 \
PBO
PB1

PB2
PB3
PB4
PBS
PB6
PB7

CB2 y

USER
PORT

S9110

\

S9ItF

SERIAL SRO (IN)

COLUMN
OUTPUT

JOY 3

SERIAL DATA (OUT)

Fig. 19 — Allocation of the I/O lines from the two 6522 chips.

153

Though these lines are all assigned particular functions the user is not

confined to using a particular 1/0 line for the function designated for

that line This is because all the I/O lines are under software control

and it is not until the routines, within the operating system which

utilise that line, are called for a particular function, that that line is

used. This flexability allows the re-definition of I/O line function and is

one of the most useful features of the VIC.

A block diagram of the 6522 is shown in Figure 18 a very complex

chip with sixteen different addressable registers. Each bit within

these registers has a specific function, either as an input, an output or

to control the operation of the 6522. A memory map of he

addressable registers of the two chips is shown in Figure 8, the

registers are of six basic types; I/O data direction, peripheral control,

shift register, timers and timer control registers.

The diagram in FigurelScan be divided into two, on the left are the

connections to the processor, the processor interface. On the right the

outputs of the 6522, or the peripheral interface. The mam components

of the processor interface are the eight bi-directional data lines. These

are connected directly to the processor data bus and are used to

transfer data between the VIA and the processor. As with any

memory, the processor treats the 6522 as a sixteen byte bbc of

memory, the direction of data transfer is controlled by the R/W line,

the exact timing of a transfer being controlled by the 02 clock line. The

individual registers are addressed by the register select lines

connected to the bottom address lines AO - A3. The exact location of

the 6522 within memory space is determined by de-coding some of

the address lines and connecting these to the chip select inputs^ The

reaisters of the 6522 will only be accessed if chip select CS1 is high and

CS2 low As with all the 1/0 chips the 6522 can generate a processor

interrupt by pulling the IRQ line low. This occurs whenever an interna

interrupt flag is set as a result of an input on one of the peripheral

control lines.

The processor interface lines have seven basic functions which can be

summarised as follows;

1 — Phase Two Clock (^2) — data transfers between the 6522 and

the processor take place only when the 02 clock is high^This clock a^o

acts as a time base for the internal 6522 timers and shift register. On

the VIC the 02 clock is derived from the 6561 video interface chip and

has a frequency of MHz 1 .1 082.

154

Tfm
1) Game I/O 4) Serial I/O

2) Memory Expansion 5) Cassette

3) Audio and Video 6) User Port

Fig. 20 — Position of the different VIC I/O outputs.

USER I/O

1 2 3 4 5 6 7 8 9 10 11 12

ABCDEFHJKLMN

PIN« TYPE NOTE PIN# TYPE NOTE

1 GND A GND
2 + 5V llMmA MAX. B CB1

3 RESET C PB0

4 JOYd D PB1

5 JOY1 E PB2

6 JOY2 F PB3

7 LIGHT PEN H PB4

8 CASSETTE SWITCH J PBS

9 SERIAL ATN IN K PB6

ie + 9V llWmA MAX. L PB7

11 GND M CB2

12 GND N GND

Fig. 21 — The allocation and function of pins on the User Port connector.

155

2 - Chips Select Lines (CS1, CS2) - the two chip select inputs are

connected to the processor address bus CS1 is connected d,recth/o

a low address line, in VIA No. 1 ., to A4 and in VIA No. 2., to A5. CS2 is

connected in both VIA chips to a decoded address derived from

address lines A10 to A15. CS2 determines the starting address as

$91 00 and CS1 is the offset so that VIA No. 1 ., starts at address $91 10

and VIA No. 2., at $9120. Note that the 6522 registers can only be

addressed wheri CS1 is high and CS2 is low.

3 - Register Select Lines (RSO. RSI. RS2, RS3) - the four register

select lines are connected to the processor address bus lines AO — A3,

This allows the register to select one of the sixteen registers in the

6522.

4- Read/Write Line (R/W) - the direction o^ data transfer

between the 6522 and the processor is controlled by the RAA/ line. If

R/W is high then a 'read' operation is performed and data is transferred

from the 6522 onto the data bus. If R/W is low then a 'wnte operation

is performed and data currently on the data bus is loaded into the

addressed register of the 6522.

5 - Data Bus (DBO to DB7) - data is transferred between the

processor and the 6522 via the eight bi-directional lines of the data

bus The internal data bus of the 6522 will only be connected to he

processor data bus when the two chip select lines are enabled and the

ll clock is high. The direction of data transfer will depend on the state

of the R/W line and the register addressed on lines RSO to RS3.

6 — Reset (RES) — the reset line clears all the internal registers of

the 6522 (except the timers and shift register) and sets them all at

logic zero. Resulting in all the interface lines put in the input state, and

tir^ers shift registers and interrupts are all disabled. This is connected

tn the orocessor power up circuitry and is only used when the system

!s sll^tc'hed on (tKis line is accessable externally and since the system

software can be changed its function could be modified).

7 _ Interrupt Request (IRQ) — the interrupt request output from

the 6522 is very important in the VIC. The IRQ line goes low whenever

an internal interrupt flag is set and the corresponding interrupt flag is

hiah On VIA No 1., the IRQ line is connected to the processor NMI

interrupt line, this is used to test the RESTORE key which is conriected

to the CA1 line of the VIA, an IRQ signal is produced if this line is

156

SERIAL I/O

PIN# TYPE

1 SERIAL SRO IN

2 GND
3 SERIAL ATN IN/OUT

4 SERIAL CLK IN/OUT

5 SERIAL DATA IN/OUT

6 NC

Fig. 22 - The allocation and function of pins on the Serial I/O connector.

AUDIO/VIDEO

PIN# TYPE

1 1 + 6V

2 GND
3 AUDIO

4 VIDEO LOW
5 VIDEO HIGH

NOTE

10mA MAX

Fig. 23 - The allocation and function of pins on the Audio/Video connector.

GAME I/O

1 2 3 4 5

o O o o O

o o o o
/

^ 6 7 8 9J

PIN* TYPE NOTE

1 JOY«

2 J0Y1

3 joy2

4 JOYS

5 POTY
6 LIGHT PEN

7 + 5V MAX. 1(WmA

8 GND
9 POTX

Fig. 24 — The allocation and function of pins on the Game I/O connector.

157

brought low (key depressed). On VIA No. 2., the IRQ line is connected

to the processor IRQ line, the function of this line is to generate a

regular 60 Hz interrupt which is used by the clock, I/O and keyboard

routines, this interrupt is provided by Timer 1 in the VIA.

The peripheral interface lines are divided into two I/O ports, each

port having eight bi-directional I/O lines and two control lines. The

function of each of the four ports on the ViC are shown in Figure 3. The

following is a brief discription of the I/O buses and control lines of a

6522:

1 _ Peripheral A Port (PAO — PA7) — this port consists of eight

bi-directional lines each of which can be independently programnned

under control of the Data Direction Register to act as either an input or

an output The polarity of the lines defined as outputs is controlled by

the contents of the Output Register. Data input on those lines defined

as inputs can be latched into an internal register under control of the

CA1 line The internal control registers are used by the processor to

control the modes of operation of the 6522. All lines represent a load

of one standard TTL gate in the input mode and will drive one

standard TTL load in the output mode.

2 _ Peripheral A Control Lines (CA1, CA2) — the two peripheral

control lines act as interrupt inputs (as in the RESTORE key) or as

handshake outputs (as in serial clock output). Each line controls an

internal interrupt flag with a corresponding interrupt enable bit. In

addition CA1 controls the latching of data on peripheral port A input

lines. The various modes of operation are control registers of the

6522 CA1 is a high impedence input only while C/\2 is either an input

or an output. In the input mode CA2 will source one standard TTL load

and in the output mode will drive one standard TTL load.

3 _ Pehpheral B Port (PBO — PB7) — this port consists of eight

bi-directional lines each of which can be independently programmed

under control of a Data Direction Register to act as either an input or

an output. The operation and electrical characteristics of Port B is the

same as Port A. In addition when line PB7 is in the output mode it's

polarity can be controlled by one of the internal timers. The second

timer can be used to count pulses on line PB6 when that line is in the

input mode.

4 _ Peripheral B Control Lines (CB1, CB2) — these two peripheral

control lines have the same functions and electrical characteristics as

158

control lines CA1 and CA2. They also have the additional function of

acting as a serial port under control of the internal shift register of the

6522.

159

OPERATION OF THE I/O PORTS

Three registers are required to access each of the eight line

pe ipheral ports, they are a Data Direction register, an Output register

and an Input register. Each port has a Data Direction register for

sSeci?ying whether each of the eight lines acts as either an input or an

output A zero in bit of the Data Direction register causes the

colEsponding penpheral line to act as an input. A one causes the line

to act as an output.

Example; Set lines to 3 as inputs and 4 to 7 as outputs on Port B of

VIA No. 1.

I/O line

number

1

2

3

4

5

6

7

data

direction

in

in

in

in

out

out

ou

out

DDR contents

if line = in

1

2

4

16

32

64

128

DDR contents

for example

16

32

64

128

Total for example— 240

Command is -POKE 371 38,240

Each penpheral line is connected to an Input register and an Output

reqister When a line is programmed to act as an output the voltage on

ha Tne is controlled by the corresponding bit in the Output register.

A '1'
in the Output register causes the corresponding line to go high

,

and a '0' causes it to go'low'.

Example: output to port B of VIA No. 1., using the data direction set

out in the previous example, lines 4 and 7 are high and lines 5 and 6 are

'ow- •• valueofline

in I/O reg

16

I/O line

number

data direction

of line

in

'high' or

'low'

1
in

—
2 in

—
3

4

in

out 'high'

160

5

6

7

out

out

out

'low'

'low'

'high' 128

Total for example

Command is —-POKE 37136,144

Reading one of the peripheral port registers causes the contents of

the Input register to be transferred onto the data bus. With input

latching disabled the contents of the Input registers will always

reflect the data currently on all the peripheral port lines.

Examples; read the contents of the input lines of port B of VIA No.1 .,

set up in the example on data direction, store the contents as variable

A.

A= PEEK (37136) AND 15

the AND 15 masks off the lines used as outputs, they must be

removed since the current state of the output lines is stored in the

input register. AND commands can then be used to determine which

lines are 'high' and which are 'low', thus to determine the state of line

use:

10X = AAND2: REM line 2 = AND 4, line 3 = AND 8 etc

20IFX = 0THEN40
30 PRINT "Line 1 is'high":END

40 PRINT "Line 1 is 'low":END

If input latching is enabled then input register A will reflect the

contents of all the lines on Port A prior to the setting of the CA1

interrupt flag by an active transition on CA1

There is a slight difference in the operating of Port A and Port B.

Both operate in the same manner, however, for the output lines of

Port B the corresponding bits in the Input register will contain the

contents of the corresponding output register bit instead of the data

on that line. This allows proper data to be read into the processor if

the output line is not allowed to go to the full voltage. Thus if an

output line is tied to ground or zero voltage then that line will always

be at a logic zero irrespective of the contents of the corresponding

Output register bit. In Port A this bit will always be '0' in the Input

161

reaister but in Port B it will contain the contents of the corresponding

bit in the Output register. With input latching enabled on Port B,

setting the CB1 interrupt enable flag will cause the Input register to

Sch this combination of input data and Output register data until the

interrupt flag is cleared.

Registers Used in Operation of the I/O Ports.

Register 1 — Parallel port B I/O register

yiA isio. 1 — Hex $91 1 decimal 37136

yi/i^No. 2— Hex$9120 decimal 371 52

This register contains the contents of the input and output lines of

Dort B of the 6522, ReadingporxDuiuie a
CB2 interrupt flag to be reset.

Register 2— Parallel port B I/O register with handshake control.

yiA No. 1 — Hex $91 1 1 decimal 37137

VIA No. 2— Hex $9121 decimal 371 53

This is one of two registers which contain the contents of the input

and output lines of port A. The two registers are identical except that

?his reader has control over the handshake lines. Data input using

the CA1 line to latch the input into the I/O register will set the CA1

interrupt flag. This flag is cleared by reading the contents of register

No. 2.

Register 3— Data direction register for port B

yi^^tslo. 1— Hex$9112 decimal 37138

VIA No. 2— Hex $9122 decimal 371 54

This register controls each of the eight lines on PortB and

determines whether they are acting as inputs or outputs. A one in

any of the eight bits of this register sets the corresponding line into

the output mode, and a 'zero' puts it into the input mode.

Register 4— Data direction register for port A

VIANo. 1— Hex$9113 decimal

Vi;^ls|o.2— Hex$9123 decimal 371 55

This register controls each of the eight lines on port A and

determines whether they are acting as inputs or as outputs. A one in

162

any of the eight bits of this register sets the corresponding line into

the output mode and a zero puts it into the input mode.

Register 1 6— Parallel port A I/O register

VIA No. 1— Hex $91 IF decimal 371 51

VIANo.2— Hex$912F decimal 371 67

This is the second of the two registers containing the contents of

the input and output lines or port A. This register has no control over

the handshaking lines. The direction of the data transfer in this port is

controlled as in the other port A register by the contents of Data

direction register A.

163

THE INTERVAL TIMERS AND COUNTERS OF THE 6522

ThP 6522 has two internal tinners, one of whicin can also function as

a counter of pulses input on one of the I/O lines. These timers are not

only useful but of vital importance to the operation of the VIC It is

these timers which are used to control the generation of the 60 Hz

interrupt used to update the real time clock and scan the keyboard.

They are also used to control the timing of I/O on the senal port the

RS232 port and the cassette. Since the VIC interface uses two 6522

chips there are a total of four timers available for use by the system

software The timers are used in conjunction with the processor

interrupts, the following table shows some of the functions of each

timer plus the interrupt line affected;

VIA No. 1 NMI interrupt

Timer 1 — RS232 port I/O timing

user port operation

Timer 2— RS232 port I/O timing

user port operation

VIA No. 2 IRQ interrupt

jiPner 1 — System 60 Hz interrupt

real time clock updating

keyboard scanning

Cassette read/write timing

yiPner 2— Cassette read/write timing

Serial port timing

Note that Timer 1 of VIA No. 2.. is used for both updating the real time

clock and cassette timing, for this reason the real time clock looses

whenever the cassette is used.

Interval Timer 1 consists of two eight bit latches and a sixteen bit

counter, these occupy four of the 6522 registers, registers number 5 to

18. Their location in the VIC are as follows:

Register 5— Timer 1 counter low order byte

VIANo. 1— Hex$9114 decimal

VIANo. 2— Hex$9124 decimal

164

Register 6— Timer 1 counter high order byte

VIA No. 1— Hex $91 15 decimal 37141

VIANo. 2— Hex$9125 decimal 37157

Register 7— Timer 1 latch low order byte

VIANo. 1— Hex $91 16 decimal 37142

VIANo. 2— Hex $9126 decimal 371 58

Register 8— Timer 1 latch high order byte

VIANo. 1 — Hex $91 17 decimal 37143

VIA No. 2— Hex £9127 decimal 371 59

The latches are used to store data to be loaded into the counter.

After loading, the counter decrements at the system clock rate (MHz

1 1082) Thus if the counter is loaded with its maximum value (all

sixteen bits = or decimal 65,535) it will be decremented to zero in

0591 seconds. Upon reaching zero, an interrupt flag is set and one of

the two interrupt lines will go low and generate a processor interrupt.

The timer will then disable any further interrupts, or automatically

transfer the contents of the latches into the counter and continue to

decrement. In addition the timer can be instructed to invert the output

level on one of the peripheral I/O lines each time it 'times out'. The

modes of operation are controlled by reading or writing to the four

timer registers, plus the auxiliary control register and the two

interrupt registers.

The processor can only load data directly into three of the four

registers of Timer 1, these registers are the high order and low order,

latch registers and the high order counter register. The low order

counter register can only be loaded by an automatic process, which

takes the contents of the low order latch and stores it in the low order

counter register when the processor writes to the high order counter

register. The following commands would have these effects on Timer

1 of VIA No. 1:

POKE 37140, 255 :put 255 into the low order latch.

POKE 37141 , 255 :put 255 into the high order latch.

then transfer to high order counter then transfer

low order latch into low order counter,

and reset the Timer 1 interrupt flag.

POKE 37142, 255 :put 255 into the order latch

POKE 37143, 255 ;put 255 into the high order latch and reset

the Timer 1 interrupt flag

165

All four Timer 1 registers can be read using PEEK or similar

commands, reading each of these registers of VIA No.l.. has the

following effects:

^ ^ PEEK(37140) :read contents of low order and reset I imer

1 interrupt flag.

^^ PEEK(37141) ; read contents of high order counter

^ = PEEK(37142) ;read contents of low order latch

^ ^ PEEK(37143) :read contents of high order latch

The four operating modes of Timer 1 are controlled by two bits in

the Auxiliary Control Register. This register is register No. 2 of the

6522 and is located at address $91 IB (decimal 37147) for VIA No 1..

and $91 2b (decimal 37163) for VIA No. 2. Bits 6 and 7 of the Auxiliary

Control register (for ACR) are used to control the operating modes of

Timer 1 these four modes can be divided into two groups each of two

modes 'the one shot modes and the free running modes. The Auxi lary

Control Register is also used to control the output by Timer 1 of pulses

on peripheral I/O line PB7 of the VIA. However, to output pulses on

PB7 requires that the Data Direction Register for Port B line 7 ,s set o

r so that this line is in the output mode. Setting bit 7 of the ACR will

then ensure that peripheral line PB7 is under control of Timer 1, Line

PB7 is set into the output mode by the following command.

POKE37138, PEEK (37138) AND 127 OR 128

Bits 6 and 7 of the ACR are used to control the operating modes as

follows:

y^QPj bjt 6— '0' = enable one shot mode
'1' = enable free-running mode

ACR bit 7— '0' = disable output on PB7 ~^^

' 1
' = enable output on PB7

The four operating modes formed by combinations of these two

bits can be obtained by using PEEK and POKE commands plus logical

operators, thus for VIA No. 1 ., the modes and commands are:

ACR6 = '0' ACR7 = '0'

Mode function - Generate a single time-out interrupt on (NMI)

each time Timer 1 is loaded. Output of PB7 by Timer 1 is disabled.

166

POKE 371 47, PEEK(37147) AND 63

ACR6='0' ACR7 = '1'

Mode function — Generate continuous interrupts, the spacing

between interrupts being determined by the contents of Timer 1.

Output on PB7 by Timer 1 is disabled.

POKE 37147, PEEK(37147) AND 63 OR 64

ACR6 = '1' ACR7 = '0'

Mode function — Generate a single interrupt and an output pulse

on PB7 for each Timer 1 load operation. Note: ensure that the Data

Direction Register is set to allow PB7 to function as an output before

using this mode.

POKE 37147, PEEK(37147) AND 63 OR 128

ACR6 = '1' ACR7 = '1'

Mode function — Generate continuous interrupts and pulses on

PB7, the spacing between interrupts and pulses being determined by

the contents of Timer 1 . Note; ensure that the Data Direction Register

is set to allow PB7 to function as an output before using this mode.

POKE 37147, PEEK(37147) AND 63 OR 1 92

The one-shot mode allows the generation of a single interrupt for

each timer load operation. The sequence of events is that the timer is

loaded with a value, the counter then decrements this value, when

zero is reached an interrupt is generated. The delay between the write

operation and the generation of the interrupt is thus directly

proportional to the data loaded into the counter. If the operating

mode and Data Direction Register contents allow the generation of a

pulse on peripheral line PB7 then the pulse width is also dependent on

the value loaded into the counter. To use the timer in the one-shot

mode the following sequence of operations are performed;

1 _ Set bits 6 and 7 of the Auxiliary Control Register to give the

correct operating mode — one-shot with output on PB7 and without

output on PB7. If a pulse is to be output on PB7 ensure that the Data

Direction Register is correctly set to define PB7 as an output.

167

2 — Load the low order latch (location $91 16 of VIA No. 1) with low

order part of value to be loaded into the counter.

3 — Load the high order counter (location $9115 of VIA NO. 1) with

the high order part of the timing value.

Operation numbers initiates the following events;

1 — The contents of the low order latch are transferred into the low

order counter

2 _ If the PB7 output is enabled then this line will be pulled low on

the phase two clock pulse following the write to high order counter.

3 _ The contents of the counter is decremented at the <p2 system

clock rate.

4 — When the counter reaches zero the Timer 1 interrupt flag is set

and a system interrupt generated (assuming the interrupt is enabled),

if the output on PB7 is enabled then that line will go high.

5 _ The counter will roll over and continue decrementing from a

value of decimal 65,535. This allows the system processor to read the

counter contents and determine the time since the interrupt. The

Timer 1 interrupt flag will not be reset until it has been cleared by a

read of low order counter or a write to high order latch).

Note- when using the timers, the count value loaded into the timer

must be two counts less than the desired interval time, this is due to

the 1 1 /2 cycle overhead on interval timing.

The free-running mode allows the generation of a continuous series

of evenly spaced interrupts. If the operation mode and Data Direction

Register contents allow the generation of an output on peripheral line

PB7 then a continuous series of pulses are also produced on this line.

The time between each interrupt or output pulse is dependent on the

contents of the Timer 1 latch bytes. To use the timer in the free-

running mode the following sequence of operations are performed;

1 — Set bits 6 and 7 of the Auxiliary Control Register to give the

correct operating mode — free-running with output on PB7 and

without output on PB7. If pulses are to be output on PB7 ensure that

168

the Data Direction Register is correctly set to define PB7 as an output.

2 — Load the low order latch (location $9116 of VIA No. 1) with the

least significant byte of the counter delay value).

3 - Load the high order latch (location $9115 of VIA No. 1) with the

most significant part of the counter delay value.

This will initiate the following sequence of events:

1 — The counter of Timer 1 will be loaded with the contents of the

two latch registers.

2 _ The counter will start decrementing at the ^2 system clock

rate.

3 _ When the counter reaches zero the interrupt flag will be set

and if Timer 1 interrupts are enabled a system interrupt will be

generated. The output on line PB7 will be inverted (it will go low on

the first interval) if outputs on this line are enabled.

4 _ The latch contents will be reloaded into the counter and the

process repeated through from step 1 to 4 until disabled by changing

the operating mode.

Timer 2 occupies two registers of the 6522, one contains the low

order latch and counter value, the second contains the high order

counter, together they comprise a single sixteen bit counter. The

location' of these two registers, number 9 and 10, in the VIC are as

follows;

Register 9— Timer 2 low order latch/counter

VIA No. 1. — Hex $91 18 decimal37144

VIANo. 2. — Hex$9128 decimal37160

Register 1 — Timer 2 high order counter

VIANo. 1 — Hex$9119 decimal37145

VIA No. 2 — Hex $9129 decimal 371 61

The operation of register 9 is a 'write only' latch and a 'read only'

counter which contains the least significant byte of the the counter

value. The functions of the two registers are summarised in the

following commands to the registers of Timer2 of VIA No. 1

.

169

POKE 37144, 255 :put 255 into the low order latch

^ ^ P££K (37144) : variable A will contain the value in the low

order counter. This will clear the Timer 2

interrupt flag.

POKE 37145, 255 ;put 255 into the high order counter and transfer

the contents of the low order latch to the low

order counter. Will clear the Timer 2 interrupt

flag.

^ ^ PEEK(37145) A = contents of high order counter

Timer 2 has two modes of operation, these modes are selected by

the contents of bit 5 of the Auxiliary Control Register. In the first mode

Timer 2 acts as an internal timer (in the one-shot mode orily) and in the

second mode as a counter of pulses input on penpheral line PB6. The

ACR contents controlling these two modes are as follows:

ACR bit 5— '0' = one-shot interval timer

' 1
' = pulse counting mode

The mode can be set with the following Basic commands;

ACR5 = '0' POKE 37147, PEEK(37147) AND 223

ACR5 = 'V POKE 37147, PEEK{37147) AND 223 OR 32

The operation of Timer 2 in the one-shot interval timer mode is

similar to the same mode on Timer 1 allowing the generation of a

single interrupt for each timer load operation. The delay between the

write operation and the interrupt is proportional to the value stored in

the two counter registers, this value being decremented at the p2

system clock rate. When the value reaches zero the interrupt is

generated. To use the timer in this mode the following sequence of

operations is performed:

1 - Set bit 5 of the ACR to logic 'O' to give the correct operating

mode.

2 _ Write the least significant byte of the interval count value into

the low order latch (location $91 1 8 of VIA No. 1).

170

IS

3 — Write the most significant byte of ttie interval count value into

the high order counter (location $91 1 9 of VIA No. 1).

Operation 3 initiates the following events:

) — The contents of the low order latch are transferred into the low

order counter.

2 — The contents of the counter have decrennented at the 02 system

clock rate.

3 _ When the counter reaches zero the Timer 2 interrupt flag is set

and if the interrupt is enabled a system interrupt generated.

4 — The counter will roll over and continue to decrement from a

value of decimal 65,535. This allows the system processor to

determine the time since the interrupt. The Timer 2 interrupt flag will

not be reset until it is cleared by reading the contents of the low order

latch or writing to the high order counter. The latter will also initiate a

new interval timing sequence.

In the pulse counting mode the function of Timer 2 is to count a

predetermined number of negative going pulses input on peripheral

line PB6, the counter can also be used as a straight pulse counter. The

two registers of Timer 2 are loaded with a value. Writing into the high

order byte initiates the countdown and clears the interrupt flag. The

counter contents are decremented each time a pulse is applied to line

PB6. When the counter reaches zero the interrupt flag is set. To use

Timer 2 in the pulse counting mode requires the following sequence

of operations:

1 _ Set bit 5 of the ACR to logic '1' to give the correct operating

mode.

2 _ Set the Data Direction Register so that line PB6 is an input,

this can be done with the following command (the register location is

for VIA No. 1).

POKE 371 38, PEEK(371 38) AND 1 91

3 — Load the low order latch (location $9118 of VIA No. 1) with the

least significant byte of pulse count value.

171

4 — Load the high order counter (location $9119 of VIA No. 1) with

the nnost significant byte of the pulse count value.

Operation 4 initiates the following sequence of events:

1 _ The contents of the low order latch is transferred into the low

order counter and the interrupt flag is cleared.

2 — The counter contents are decremented on a negative going

pulse. This pulse must have gone low prior to the leading edge of the

(t)2
clock pulse, if not then the counter will not be decremented until

the next ^2 clock pulse.

3 _ The counter continues to be decremented by pulses input on

PB6 until the counter reaches zero. On reaching zero the interrupt flag

is set.

4 _ The counter will roll over and contain the value decimal

65,535, further pulses input on PB6 will continue to decrement this

value. However, it will be necessary to rewrite the contents of the

high order counter or read the low order counter to reset the interrupt

flag.

Timer 2 is also used to control the frequency of input or output from

the internal shift register of the 6522.

Both the internal timers on the 6522 have several features in

common, the phnciple being that they are all 'retriggerable'. This

means that the time-out period will always be re-initialised by

rewriting the counter. The value of this is that a time-out and its

associated interrupt can be prevented if the processor rewrites the

timer prior to its reaching zero. This is utilised by all the time-out

features of the I/O software on the VIC, thus allowing proper

detection of time-out errors. The second important feature is that

both counters have a 1 1/2 clock cycle 'overhead' on the time interval.

This means that the count value loaded into the timer must have a

value, two counts less, than the required interval.

172

THE SHIFT REGISTER

One of the internal registers of the 6522, register 1 1 ,
functions as a

shift register, converting data between serial and parallel format.

Eight data lines, one control line and a ground line, are required to

transfer a byte of data from a peripheral I/O port like a VIA to an

external device. With serial transmission this same byte of data can be

transferred using just three lines, a data line, a control line and a

ground line. Serial data transmission is thus of considerable use in

controlling and communicating with external devices, where the

number of lines connecting the computer to the external device must

be kept to a minimum. The internal shift register of the 6522 allows

this serial input/output of data, though its functioning and flexibility

is less sophisticated than a standard UART (Universal Asynchronous

Receiver Transmitter). Besides generating or inputting serial data, the

shift register can perform a range of other functions, including

variable frequency pulses output on one of the VIA I/O lines and a

means of expanding the I/O capability of the VIA.

Two I/O lines are associated with the operation of the shift register,

they are CB1 and CB2. The CB2 line is used for the serial transmission of

the byte of data either into or out of the shift register. CB1 is used to

carry the internally or externally generated shift clock pulses which

clock the serial data in or out of the shift register. Each pulse on the

shift clock shifts the entire contents of the shift register one bit to the

left bit 7 being output on line CB2 or the current logical state of the

CB2 line input into bit 0. The contents of the shift register can be read

or data loaded into it, by the standard processor read or write

commands. There are three sources of the shift clock each having a

different function and application, they are:

-| _ Timer 2 low order register. The bottom eight bits of the 16 bit

Timer 2 counter are used to create a programmable rate shift clock. The

value loaded into the least significant byte of the timer controls the

time between transitions of the shift clock, two transitions are

required for one complete shift clock cycle. The value loaded into the

timer can be between and 255 and the timer count down rate is

determined by the frequency of the processor ^2 clock, in the VIC this

is MHz 1.1082. A delay time between transitions of 4.433 to 571.831

microseconds can be programmed between each shift operation. The

shift clock pulses generated by Timer 2 are output on line CB1

.

173

2 — Microprocessor (^2 clock. The processor clock can be

programmed to directly provide the shift clock pulses The ^2 clock

signal is divided by two, this gives a maximum shift dock ori the VIC of

KHz 554.1 which gives a delay between each shift of 1.8

microseconds.

3 - An external signal applied to the CB1 line. This square wave

signal input on CB1 can be any frequency subject only to a maximum

of KHz 554.1.

The shift clock pulses are counted by a modulo-8 counter. When this

counter has counted eight shift pulses it sets the shift register f^g in

the interrupt flag register. When the processor reads or wntes data to

he sh't register the shift register flag is cleared. By ceanng the sh.f

register flag the modulo-8 counter is set to zero, the shift clock

Lnab ei and data shifted in or out of the shift register. After eight shif

pulses the flag is set and the shift clock disabled. In some modes of

operation the modulo-8 counter is re-triggered by a write command

to the shift register during a shift operation. In the free-running mode

the modulo-8 counter is not used, resulting in continuous repeated

output of the contents of the shift register.

The shift register of the 6522 has eight modes of operation and the

mode used is selected by setting bits 2, 3 and 4 of the Auxiliary Contro

Register The eight operating modes can be divided into four output

modes and four input modes, for VIA No.1., the modes and

commands are:

ACR2 = '0' ACR3 = '0' ACR4 = '0'

Mode function— The shift register is disabled.

POKE 37147, PEEK(37147) AND227

ACR2 = ' 1
' ACR3 = '0' ACR4 = '0'

Mode function - Input data on line CB2 and put into bit of shift

register, under control of Timer 2 low order counter, shift clock pulses

output on CB1. Note: does not appear to work properly under Basic

commands.

POKE 37147, PEEK(37147) AND 227 OR 4

174

ACR2 = '0' ACR3 = '1
'

ACR4 = '0'

Mode function — Input data on line CB2 under control of the system

(/)2 clock and put into bit of shift register, shift clock pulses output on

CB1. Note: does not appear to work properly under Basic commands.

POKE 37147, PEEK(37147) AND 227 OR 8

ACR2='1' ACR3 = '1' ACR4 = '0'

Mode function — Free running output of the shift register contents

under control of Timer 2. In this mode the contents of the shift register

are recirculated, bit 7 of the shift register is shifted onto the CB2 output

line and simultaneously shifted into bit of the shift register. The

frequency of the shift pulses is determined by the contents of the low

order byte of Timer 2. The result is the continuous repeated output of

the contents of the shift register. In this mode the CB2 line can be used

as a programmable frequency source or a simple music generator (by

connecting CB2 to an amplifier and speaker).

POKE 37147, PEEK(37147) AND227 OR 16

ACR2 = '1' ACR3 = '0' ACR4 = '1'

Mode function — Output data from shift register on line CB2 under

control of Timer 2. The time delay between shift pulses is determined

by the contents of the low order byte of Timer 2. A PEEK command to

the shift register will reset the shift register flag in this mode even

though the shift process is not completed.

POKE 37147, PEEK(37147) AND 227 OR 20

ACR2 = '0' ACR3 = 'r ACR4 = '1'

Mode function — Output data from shift register on line CB2 under

control of the system 02 clock.

POKE 371 47, PEEK(37147) AND 227 OR 24

ACR2 = '1' ACR3 = '1' ACR4 = 'r

175

Mode function - Output data from shift register on line CB2 under

control of an external shift clock input on line CB1

.

POKE 37147, PEEK(37147) AND 227 OR 28

176

INTERRUPTS

The 6522 VIA has only a single interrupt request line to the 6502

microprocessor, VIA No. 1., interrupt is connected to the processor

NMI interrupt and VIA No. 2., is connected to the IRQ interrupt. The

interrupt output from the VIA can be activated (pulled to a logic

level) by any one of seven different conditions. These conditions are

represented by bits in the Interrupt Flag Register (IFR), each bit or

'flag' can be set to either logic '1', the 'on' state, or to logic '0' the 'off

state These flags are set as a result of certain conditions arising from

the use of the other registers of the VIA. However, for one of these

flags to activate the IRQ line to the processor requires two things to be

true;

1 _ The bit in the IFR that represents the condition which

generates the interrupts must be 'on' and thus set to logic
'1

'.

2 — The corresponding bit in the Interrupt Enable Register (lER)

must also be set to a logic
'1

'.

Without the correct bits in the lER being set an interrupt condition

will only set a flag in the IFR and will not generate a processor

interrupt. These two registers, the Interrupt Flag Register and the

Interrupt Enable Register are thus directly connected in their function.

The location of these two registers, number 14 and 15 in the VIC are as

follows;

Regrster 14— Interrupt flag register

ViANo. 1— Hex$911D decimal 37149

VIANo. 2— Hex$912D decimal 37165

7 6 5 4 3 2 10

L^
CA2 interrupts flag

CA1 interrupt flag

Shift Register interrupt flag

CB2 interrupt flag

CB1 interrupt flag

Timer 2 interrupt flag

Timer 1 interrupt flag

IRQ has occurred

177

Register 1 5— Interrupt enable register

VIANo. 1— Hex$911E

VIANo.2— Hex$912E

decimal 37150

decimal 37166

7 6 5 4 3 2 10

CA2 interrupt enable

CM interrupt enable

Shift register interrupt enable

CB2 interrupt enable

CB1 interrupt enable

Timer 2 interrupt enable

Timer 1 interrupt enable

lER set/clear control

Each flag in the Interrupt Flag Register is set or
^f/^fby

a
^P^.f '.^

operation to one or more of the other registers of the 6522, this is

summarised in the following table:

BIT SET BY

Active transition on CA2

1 Active transition on CA1

2 Completion of 8 shifts

3 Active transition on CB2

4 Active transition on CB

1

5 Timeout on Timer 2

6 Timeout of Timer 1

CLEARED BY

Reading or writing Output

Register A
Reading or writing Output

Register A
Reading or writing to

Shift Register

Reading or writing Output

Register B

Reading or writing Output

Register B

Reading Timer 2 counter

low byte or writing

Timer 2 high byte

Reading Timer 1 counter

low byte or writing

Timer 1 high byte

Writing logic '0' to the

appropriate bit in IFR

orlER

7 Any IFR bit with

corresponding lER bit

also set

Bit 7 of the Interrupt Flag Register is connected to the IRQ output

line of the VIA . and is set to logic 'V when one of the other seven

178

lower order bits in the IFR is set, it thus signals the condition that an

interrupt has occured. Bit 7 of the Interrupt Enable Register is used to

control the contents of the other seven lower order bits. If bit 7 of the

lER is set to logic '1' then all other bits in that register which are set to

logic '1' will enable the interrupt request corresponding to that bit.

Thus the Timer 1 interrupt to the processor would only be enabled if

bits 7 and 6 are both set to logic
'1

'. If bit 7 of the lER is set to logic '0'

then any of the seven lower order bits of the lER which are set to logic

'1' will disable the interrupt request corresponding to that bit. Thus all

processor interrupts from a VIA could be disabled by setting bit 7 of

the IEP to '0' and all other seven bits to '1'. Initialising the lER takes

two write operations, one to select the enabled interrupt conditions

and the other to select the disabled conditions. It should be noted that

bit 7 of the lER is only active during a Write operation, when the

contents are read it will always contain a logic '1' irrespective of its

actual contents. The enabling or disabling of interrupts using the lER

does not affect the setting of interrupt flags in the IFR.

The NMI interrupt is connected to the IRQ output of VIA No. 1., and

the IRQ interrupt is connected to the IRQ output of VIA No. 2. When
one or other of these interrupt lines is pulled low by an interrupt from

one of the VIA's, the processor completes the current instruction

pushes the register contents and program counter onto the stack and

jumps to either the NMI of IRQ interrupt handling routines. The

starting addresses of the two interrupt handling routines are stored in

the top few bytes of memory. The NMI start address is located at

$FFFA and $FFFB and the IRQ start address at $FFFE and $FFFF. In the

VIC the start addresses of the interrupt handling routines point to two

jump addresses located in RAM, the RAM jump vectors, IRQ at $0314

and $0315 and NMI at $0318 and $0319. These RAM vectors contain

the actual start address of the interrupt handling routine. The reason

for using the RAM vectors is that it allows the programmer to change

the starting address of the interrupt handling routines, thus creating

his own interrupt handling routines.

Since there are as many as seven different conditions in the VIA

which can generate an interrupt request to the processor, a single VIA

might require as many as seven interrupt service routines. The VIC,

with two VIA chips connected to each of the two interrupt request

inputs of the 6502, has a potential requirement for up to fourteen

interrupt service routines in the system software (in practice only 6

are used). To determine which one of the seven interrupt conditions

179

of the VIA caused the interrupt request, a programming technique

known as polling is used. The interrupt handling routines show how

this is done by the VIC.

180

FUNCTION CONTROL

Control of the various functions and operating modes within the

6522 is accomplished primarily through two registers, the Peripheral

Control Register (PCR) and the Auxiliary Control Register (ACR). The

PCR is used to select the operating modes of the four peripheral I/O

control lines. The ACR selects the operating mode of the two timers

and the shift register.

Peripheral Control Register (PCR).

The organisation and location of the Peripheral Control Register is

as follows;

Register 13— Peripheral Control Register

VIANo. 1 — Hex$9110 decimal 37148

VIANo. 2— Hex$9120 decimal 371 64

Bit No. 7 6 5 4 3 2 1

r 1

'

CB2 ControlFunction
CB1

Control
CA2 Control

CA1

Control

The PCR has four seperate function fields, each associated with one

of the four I/O port peripheral control or 'handshake' lines.

CA1 Control — Bit of the PCR selects the active transition of an

input on the CA1 line. If bii of the PCR is set to logic '0', then the CA1

interrupt flag will be set by a negative transition on the CA1 line (the

line goes fronn a logic high to a logic low voltage level). If PCRO is set to

logic '1' then the CA1 interrupt flag is set by a positive transition (low

to high).

CA2 Control — Bits 1, 2 and 3 of the PCR. The C/\2 line can act as

either an interrupt input or a peripheral control output, there are

altogether eight different operating modes for this line, they are

summarised in the following table:

PCR3 PCR2 PCR1 Mode

Input Mode, set CA2interrrupt flag on a

negative transition of the input signal.

Clear IFRO on a read or write of the

Peripheral A Output Register.

181

Q 1 Independent interrupt input mode, set IFRO on

a negative transition of CA2 input signal.

Reading or writing ORA does not clear the

CA2 interrupt flag, can only be cleared by

writing '1
' to the appropriate IFR bit.

1 Input Mode. Set CA2 interrupt flag on a

positive transition of the CA2 input line.

Clear IFRO with a read or write of the

Peripheral A Output Register.

1 1 Independent interrupt input mode. Set

IFRO on a positive transition of CA2 input

signal. Reading or writing ORA does not

clear the CA2 interrupt flag, can only be

cleared by writing
'1

' to the appropriate

IFR bit.

1 Handshake output mode. Set CA2 output

low on a read or write of the Peripheral

A Output Register. Reset CA2 high with

an active transition on CAl

.

1 1 Pulse output mode. CA2 goes low for one

processor clock cycle following a read or

write of the Peripheral A Output Register.

1 1 Manual output mode. The CA2 output is

held 'low' in this mode.

1 1 1 Manual output mode. The CA2 output is

held 'high' in this mode.

CB1 Control — Bit 4 of the PCR controls the active transition of the CB1

input line in the same manner as that described for the CAl line. In

addition if the Shift Register has been enabled line CB1 will act as an

output for the shift register clock pulses. In this mode the CB1

interrupt flag will still respond to the selected transition of the signal

ontheCBI line.

182

CB2 Control — When the serial I/O capability of the shift register is

disabled then the function of the CB2 line is controlled by bits 5, 6 and

7 of the PCR. There are altogether eight different operating modes for

this line and they are summarised in the following table:

PCR PCR6 PCR5 Mode
Interrupt input mode. Set CB2 interrupt

flag (IFR3) on a negative transition of the

CB2 input line. Clear IFR3 on a read or

write of Peripheral B Output Register.

1 Independent interrupt input mode. Set

IFR3 on a negative transition of the CB2

input line. Reading or writing ORB does

not clear the CB2 interrupt flag, clear

by setting IFR3 to '1'.

1 Input mode. Set CB2 interrupt flag on a

positive transition of the CB2 input line

Clear the CB2 interrupt flag on a read or

write of ORB.

1 1 Independent input mode. Set IFR3 on a

positive transition of the CB2 input line

Reading or writing ORB does not clear CB2

interrupt flag, clear by setting IFR3 to logic
'1

'.

1 Handshake output mode. Set CB2 low on a

write ORB operation. Reset CB2 high with

an active transition of the CB1 input.

1 1 Pulse output mode, set CB2 low for one

processor clock cycle following a write

ORB operation.

1 1 Manual output mode. The CB2 output is

held 'low' in this mode.

1 1 1 Manual output mode. The CB2 output is

held 'high' in this mode.

183

X^'^rgSonTnd iSn o, ,he AuxiLary Con„oi Register is as

follows:

Reaister 12— Auxiliary Control Register
,^^, ,^hegisie

viANo. 1 -Hex$911B decimal 37147

VlANo. 2— Hex$912B decimal 371 63

Bit No.

Function

7 I

Timer 1

Control

Timer 2

Control

Shift Register

Control

1

PB
Latch

Enable

PA
Latch

Enable

The ACR controls the operation of six of the 6522 registers, the way in

which it controls them is explained in detail in the sections covenng those

registers.

184

188 - The Cassette Unit

197 - Vic Keyboard

204 - RS232 Serial Communications

216 - Joysticks

221 - Memory Expansion Connector

224 - Serial IEEE Port

CO

o
o
Z)

o

o
>
ID

186

MOTOR

READ
WRITE

SWITCH

LU HI Ui 111

1- 1- 1- 1-
H 1- 1- H
UJ LU HI LLI

Ul
a.

^ </5 CO W CO
LI ;> CO CO CO CO
z "?<<<<
o + o o o o

3E
^- C^ CO * tf) «9
< OQ O O LU U.

a.

CO

to

CM

O

H m

<

o
03
c
c
o
o
03
+-'
+-*

(D
(0
0)
CD

O

c
o
<A
c
'a
vt-

o
c
o
*+j

u
c
«4-

T3
C
(0

c
g*^
(0
a
O
"(5

ID
CM

2d

CM
<
O

<
>

Or- CD

I I

CM CM-.-

<<<
>>>

to
Q.

o

?^
ID
<0

c
g

'4-'

U
<D
C
c
o
o
(fl

a
c
(0

_+^

'r
o

0}

in
u

CO
CM

187

THE CASSETTE UNIT.

^fe^vTharrTngle externa, cassette un,t wh,ch,s used for

nroqram and data storage. The cassette deck is connected to the Vl^C

bl six Tnes - Write. Read, Motor, Sense, and two power lines, around

and +5 volts. The connections are shown in Figure, 25.The cassette is

controlled by I/O lines from the two VIA chips and the source of each

of the cassette control lines from the VIAs is shown in Figure 26^The

cassette r^otor power supply lines are connected to the interface

chips via a three transistor driver used to boost the power and

volfaae allowing the motor to be driven directly. The output to the

motor is an unregulated +9 volts at a power rating of up to 500ma

The cassette deck motor can be turned on and off by toggling the CA2

lineon6522No. 1.:

POKE37148 PEEK(37148)AND2410R14 turns the motor on

POKE37148, PEEK(37148)OR12ANDNOT2 turns it off

The sense line input, line PA6 on VIA No. 1 ., is connected to a switch

on JheSsete deck which senses when either the Play, Rewind or

? s FoS buttons have been pressed. The switch is only required

to sense the pushing of the Play button during a read or write to tape

routfne this is done by a subroutine at $F8AB. If either the revvind or

as forvva d button is pressed accidently instead of the play button

he system will be unable to tell the difference and will act as ,f the

Dlay button was pressed. For a similar reason dunng a record routine

S record button must be pressed before the play button since

recording will start as soon as the sense switch is closed by pressing

the play button.

The cassette "Read" line is connected to the CAT line of VIA No. 2

.nd the cassette Write" line to line PBS of VIA No. 2. During a Read

operatfon the'operating system uses the setting of the CA1 interrup

Saq to detect transitions on the cassette Read line. The functioning of

he Read and Wnte lines is controlled entirely by the operating

system the only hardware required being signal amplification and

pu£ shaping circuitry. These circuits are contained on a small PC

board within the cassette deck, their function being to give correct

vo'taqe and current to the record head and amplify the input from the

read head to give a 5 volt square wave output able to produce an

interrupt on the CA1 orCBI lines.

188

The Cassette Operation.

In normal usage the cassette deck is assigned an I/O device

nunnber, the cassette is device nunnber 1, the device nunnber of the

device currently being used is stored in location 186. The device

number, the logical file number and the secondary address are used

when saving or retrieving data files from the cassette deck. The

logical file number can be any number from 1 to 255 and is used to

allow multiple files to be kept on the same device, it is of little use with

cassette tape and primarily intended for use with floppy disk units. It

is usual to have the logical file number the same as the device number,

the logical file number of the current file is stored in location 184. The
secondary address is important since it determines the operational

mode of the cassette, the current secondary address is stored in

location 185 the normal default value being zero. If the secondary

address is zero then the tape is Opened for a "read" operation, if set to

1 then it is opened for a "write" operation and if 2 then it is opened for

a "write" with an end of tape header being forced when the file is

closed.

The VIC operating system is configured to allow two different types

of file to be stored on cassette: program files and data files. These

names are however rather misleading since a program can be stored

as a data file and data can be stored as a program file. The difference

between these two file types is not in their application but in the way
the contents of the machine's memor/ is recorded. Instead of

program and data files we must look upon them as Binary and ASCII

files.

A binary file is usually used to store programs , since a binary file is

created by the operating system to store the contents of memory
between a starting location and an end location. Called a binary file

because it stores on tape the binary value in each memory location

within the assigned memory area. Basic statements are stored in

memory using tokens. The use of tokens means that Basic commands
are not stored in the same manner as they are listed on the display or

were entered on the keyboard. They are instead stored in memory in a

partly encoded form. Being partly encoded, a binary file is a quicker

and more efficient way of storing programs. Binary files are essential

when saving and loading machine code programs.

The starting address from which a binary file will be saved is stored

in locations 172 and 173. These locations are loaded by the Save

routine with memory location at which the 'save' will begin, normally

they will be set to and 4 thereby pointing to the start of the Basic text

189

256»is 176>is

176>is256ms

176>js 256>.s

176*is 256>is

0"

336>ir 256>is

336ms 256ms

Fig. 27 — The output waveforms to the cassette recorder.

190

area at 1024. They can be altered by the 'save' routine to point to any

location in menHory. The end address of the area of memory to be

saved is stored in locations 174 and 175. Normally when saving a Basic

program these are set to the address of the double zero byte

terminating link address. The end address can be altered to any

desired location. To change either of these addresses one can not use

the normal save routine since this automatically initialises these

locations. Instead one must write a small machine code initialisation

routine incorporating the desired operating system subroutines. By

default a Save command will write a binary file and a Load command
will read a binary file.

ASCII files are normally used to store data, (but can be used to store

progams, see Merge procedure) and the format is the same as that

displayed on the screen or entered on the keyboard. ASCII files are

created or read almost exclusively by instructions from within a Basic

program. A binary file is created or read mostly by direct instructions,

although the LOAD and SAVE instructions can be used within a

program.

An ASCII file must first be opened with an OPEN statement, this

specifies the logical file, device number, secondary address and file

name. The operating system interprets these parameters and allows

the user to read or write the file to the specified device. Data is written

to an ASCII file on a particular device with a command to PRINT to the

specified logical file number, and data is read by a READ from logical

file command.

Whereas a binary file is loaded with the contents of successive

memory locations, an ASCII file is loaded with a string of variables.

Storing these would require the tape to be turned on and off

repeatedly, storing a few bytes of data at a time. The VIC overcomes

this by having a 192 byte tape buffer into which all data to be written

"to", or read "from" tape is loaded. Only when this buffer is full is the

tape motor turned on. Data is stored on tape in blocks of 192 bytes and

since the motor is turned on and off between blocks a two second

interval is left between blocks to allow the motor to accelerate and

decelerate. The beginning of the 192 character buffer starts at address

828. The pointer to the start of the buffer is located at address 178 and

179. The number of characters in a buffer is stored in locations 166.

These locations can be used by the programmer to control the

amount of space left in a data file. If having opened a file on cassette,

the command POKE 166,19 1 is^ executed then_.lhecoritents of th^^

buffer even if empty are loaded onto the tape. If records are kept in

191

multiples of 191 bytes we can very easily keep nul or partially filled

records allowing future data expansion.

Whether the file being stored is binary or ASCII the recording

method is the same involving an encoding method unique to

Commodore and designed to ensure maximum reliability of recording

and playback. Each byte of data or program is encoded by the

operating system using pulses of three distinct audio frequencies

these are long pulses with a frequency of 1488Hz, medium pulses at

1953Hz and short pulses at 2840Hz. All these pulses are square waves

with a mark space ratio of 1 ;1, one cycle of a medium frequency is 256

microseconds in the high state and 256 microseconds in the low stata

The operating system takes about 9 milliseconds to record a byte of

data consisting of the eight data bits, a word marker bit and an odd

parity bit The data bits are either ones or zeros and are encoded by a

sequence of medium and short pulses: a "1" is one cycle of a medium

length pulse followed by one cycle of a short length pulse and is

one cycle of a short length pulse followed by one cycle of a medium

length pulse. Each bit consists of two square wave pulse cycles, one

short and one medium with a total duration of 864 microseconds. The

waveform timing is shown in the diagram in Figure 2 7.

The 'odd parity' bit is required for error checking and is encoded like

the eight data bits using a long and short pulse, its state is determined

by the contents of the eight data bits. The 'word marker separates

each byte of data and also signals to the operating systerin the

beginning of each byte. The word marker is encoded as one cycle of a

long pulse followed by one cycle of a medium pulse, see Figure 27.

Since a byte of data is recorded in just 8.96 milliseconds, a 192 byte

block of data in an ASCII file should be recorded in just over 1 .7

seconds. However, on timing such a recording we find it takes 57

seconds There are two causes for this discrepency in timing. Firstly to

reduce the possibility of audio dropouts the data is recorded twica

Secondly a two second inter-record gap is left between each record of

192 bytes.

The extensive use of error checking techniques is one reason why

the tape system on the VIC is so much better than that available on

most other popular computers. There are two levels of error checking.

The first divides the data into blocks of eight bytes and then computes

a ninth byte the checksum digit. The checksum is obtained by adding

the eighth data bytes together, the checksum is the least significant

byte of the result. On reading the tape if one bit in the eight bytes is

192

dropped and a zero becomes a one or vice versa the checksum can be

used to detect this error. To do this the same procedure to calculate

the checic digit is performed, the result will be different to that stored

in byte nine, the check digit of that block computed when the tape

was recorded. The second level of error checking involves recording

each block of data twice. This allows errors detected by the check

digit to be corrected during the second reading of the 192 byte data

block. By recording the data twice a verification can be performed by

comparing the contents of the two blocks, this will detect the few

errors not detected by the checksum.

The use of pulse sequence rather than two frequencies as in a

standard FSK recording has a great advantage since it allows the

operating system to easily compensate for variations in recording

speed. Normally a hardware phase locked loop circuit would be used

to lock the system onto the correct frequencies coming from the tape

head, the VIC however uses software to perform this process. A ten

second leader is written on the tape before recording of the data or

program commences. This leader has two functions, first it allows the

tape motor to reach the correct speed and secondly the sequence of

short pulses written on the leader is used to synchronise the read

routine timing to the timing on the tape. The operating system can

thus produce a correction factor which allows a very wide variation in

tape speed without affecting reading. The system timing used to

perform both reading and writing is very accurate, based as it is on the

crystal controlled system clock and Timer 1 and Timer 2 of VIA No. 2.

Inter-record gaps are only used in ASCII files and their function is to

allow the tape motor time to decelerate after being turned off and

accelerate to the correct speed when turned on prior to a block read or

write. Each inter-record gap is approximately two seconds long and is

recorded as a sequence of short pulses in the same manner as the ten

second leader. There is also a gap between blocks, when the first

block of 192 bytes is recorded it is followed by a block end marker,

which consists of one single long pulse followed by 50-1- cycles of

short pulses then the second recording of the 192 block starts, this is

identical to the first block.

The first record written on the tape after the ten second leader in

both ASCII and binary files is a 192 character file header block. The file

header contains the name of the file, the starting memory location,

and the end location. In an ASCII file these addresses are the

beginning and end of the tape buffer, in a binary file they point to the

area of memory in which the program is to be stored.

193

The file name can be up to 128 bytes long, the length of the file name

is stored in location 183, and when read is compared with the

requested file name in the Load or Open command. If the name is the

same then the operating system will read the file, if different then it

will search for the next ten second interfile gap and another header

block The file name is stored during a read or write operation in a

block of memory, the starting address of which is stored locations 187

and 188 On completion of the operation these are reset to poirit to a

location in the operating system. The starting location is normally set

to the beginning of the user memory area, address 1024, however it

can be changed to point to any location, a method employed when

recording programs in a machine code using the monitor, and also in

the no copy program. The starting address is pointed to by the

contents of locations 172 and 173. the end address being stored in

locations 174 and 175. Normally this is the highest byte of memory

occupied by the program, however it can be altered to point to any

address providing it is greater than the start address.

Important Memon/ Locations Used by the VIC Cassette.

$92 — temp used to adjust software servo

$93 — verify or load lag (0 = loading)

$96 _ flags if we have block sync (16 zero dipoles)

$9B — holds currently calculated parity bit

$9C — cassette dipole switch

$9E _ count of read locations in error pointer into $01 00

$9P _ count of re-read locations during pass No. 2.

$/i^4 _ used to indicate which half of dipole we are in

$/i^5 _ countdown for tape write ; sync on tape header

$A5 _ cassette buffer pointer

$A7 — tape short count

$/i^3 _ flags errors (if zero then no error)

$A9 _ counts zeros (if zero then correct No. of dipoles)

$AA — bits 6 & 7 hold function mode, rest = sync countdown

$AC-$AD— indirect address to start of tape data storage

$AE-$AF — indirect address to end of tape data storage

53

1

_ holds dipole time during types calculations

$B2-$B3 — start address of tape buffer

JB4 — flags if we have a byte sync (a longlong)

JB5 — used to preserve sync outside of bit routines

JB6 — has combined error values from bit routines

$g7 _ length of current file name string

$B8 — current logical file number

194

$B9 — current secondary address

$BA — current device nunnber

$BB-$BC — address of current file name string

$BD — receive input cliaracter

$BE — indicates which blocl< we are looking at (0 to exit)

$BF — holds input byte being built

SCO — cassette manual/controlled switch

$C3-$C4 — cassette load temp storage

$D7 — holds most recent dipole bit value

$01 00-$01 FF — storage of bad read locations, bottom of stack

$0259-$0262 — logical file number table

$0263-$026C— device number table

$026D-$0276— secondary address table

$033C-$03FC— cassette buffer

System subroutines used by the VIC cassette.

$F542-$F646 — Load RAM routine. Loads from cassette or serial

device as determined by contents of $BA. Verify flag in .A. Alternately

load if $B9 = (normal $B9 = 1) .X, .Y contain load address if .A =
performs load (0 is verify).

High load address returned in .X and .Y.

$F675-$F734 — Save RAM routine. Saves to cassette or serial device

selected by contents of $BA. Start of save is indirect at .A, end of save

is .X, .Y.

$F7AF-$F889 — Find tape header information, reads tape until one of

the following block types is found: basic data file header, or basic load

file. For success carry is clear on return. In addition accumulator is if

stop key was pressed.

$F88A-$F98E— Miscellaneous tape control routines.

Includes:

F8AB — cassette sense switch control

$F8B7 — check for play and record

$F8C0 — read header block entry

$F8C9 — read load block entry

$F8E3 — write header block entn/

$F8F4 — start tape operation entry point

$F95D— set up timeout watch for next dipole

195

$F98E-$FABC - Cassette read routines. The character read is passed

to the byte routine in location $BF.

$FABD-$FBE9 - Byte handler for cassette ,read_ The byte assembled

from reading tape is passed to this routine in $BD. $A8 is set it byte

S i n er'ror and $A9 is set if the interrupt P^o^-- -;-^"9
^f^t

$M tells us what we are doing, bit 7 says ignore bytes until $A9 is set

an^brt 6 says load the byte. Otherwise $AA is a countdown after sync_

If $93 is set we do a compare instead of store and set status. $BE

counts the two blocks, $9E is the index to the error table for pass No.

1 ., and $9F is index to correction table for pass No. 2.

$FBEA-$FD21 — Cassette write routines. Location $BE is the block

counter for record. If $BE = 2 then first header

= 1 first data

= second data

Note- The IRQ vectors are changed during cassette operation, if the

user has reset these vectors then they should be restored to their

normal value prior to using the cassette.

196

THE VIC KEYBOARD

The VIC keyboard has a total of 66 keys, this comprises 64
alphanumeric and special function keys, the restore key and a shift

lock key. The 64 alphanumeric and special function keys are
connected as a simple matrix to the two eight line I/O ports of VIA No.
2., the way they are connected is shown in Figure 29. The restore key
connects the CA1 line of VIA No.1., to ground and is used to generate
an NMI processor interrupt. The shift lock is simply a mechanical
device for keeping the shift key depressed. The keyboard matrix is

scanned for a key depression by having one eight line I/O port
configured as outputs and the other as inputs. Each output line is

connected via key switches to all eight of the input lines. If one of
those eight keys is depressed then the voltage level on the output line

will be transferred to the input line corresponding to that key. By
having a scanning sequence where each of the eight output lines in

turn go 'low' while the rest stay 'high' the operating system software
can determine which key in the 64 key matrix is currently pressed.

The scanning of the keyboard matrix and testing for depression of
the restore key are all under software control. The entire processor
time can not be devoted to keyboard scanning therefore scanning is

initiated by a regular 1/60 second interrupt. Keyboard scanning is one
of the functions of the IRQ interrupt servicing routine. The 1/60
second regular interrupt is generated by Timer 1 of VIA No. 2. The
interrupt service routine starts at location $EABF and the keyboard
scanning portion at $EB1 E.

The keyboard scanning routine goes through a sequence of

operations the result of which is to place each input character into a

special section of memory, the keyboard buffer. The sequence is as
follows:

1 — check if key pressed, if not then exit from routine.

2 — initialise I/O ports of VIA No. 2., for keyboard scan and set
pointers into keyboard character table No. 1 ., set character counter to
0.

3 — set one line of port B low and test for character input on port A
by performing eight right shifts of the contents of port A register, if

carry is set then character present. Each shift increments character
count, store character counter in .Y.

197

(0 in
u. u.

(0
u.

00
u.

T3

c

TO
c
<D

•D
ID

O

>

D
O>

00
CM

198

4 — go back to step 3 and repeat for next column, if character found
then continue.

5 — use character count value as index pointer into keyboard

character table to get ASCII code corresponding to depressed key.

6 — see if it is a Shift or Stop key.

7 — evaluate Shift function.

if Shift key pressed then use character count to access

keyboard character table No. 2.

if CBM key pressed then use character count to access

keyboard character table No. 3.

if CBM and Shift pressed then use character count to

access keyboard character table No. 4.

8 — use character count value as index pointer into keyboard

character table designated in step 7.

9 — checkfor repeat key operation.

10 — check for screen editor keys and take appropriate action.

11 — do repeat if required.

12 — put ASCII character obtained fronn the keyboard character

tables into the keyboard buffer, increment the pointer into the

keyboard buffer.

The contents of the 10 character keyboard buffer are accessed on a

first in first out basis by the screen handling routines. These routines

take the first character in the keyboard buffer, decrement the buffer

pointer and close up the buffer by moving the contents down one byte

thereby leaving space for new input characters. The exact function of

the screen handling routines depends on the mode of operation of the

VIC. If the VIC is in the Direct mode then the keyboard input is part of

Basic routine to receive a program line from the keyboard, the starting

address of this routine is $C56Q. If the VIC is running a Basic program
then keyboard input is part of the Basic character string input routine,

starting at location $CBBF.

In the Direct mode, characters are removed from the keyboard

199

RESTORE

RESTORE

Fig. 29 - Matrix of keyboard connections to 6522 I/O lines. 200

buffer and displayed or the screen, the character is also placed in the

88 byte Basic input buffer. This continues until a carriage return key is

pressed. The Basic interpreter then checks the contents of the Basic

input buffer to determine if the input is a valid command, and if so

then executes the command, if not returns a syntax error message.

In the program mode, characters are removed from the keyboard

queue when required by the Basic INPUT or GET commands during

the running of a program. It is in this mode that the keyboard buffer is

most useful, it allov^s a flexibility in timing between input from the

scanning routine, and the execution by the Basic interpreter of the

INPUT or GET command. This does have its drawbacks since any

characters in the keyboard buffer prior to the execution of the input

will be accepted as valid input characters. This can give rise to

spurious data input and can be avoided by clearing the keyboard

queue pointer (location 649 is set to zero).

One of the disadvantages of using the interrupt to initiate keyboard

scanning is that the interrupt routines are changed during I/O

operations between the processor and the cassette or serial I/O

devices. The drawback is that the user looses control of the system if

the keyboard is disabled as a result of a temporary sessation of

scanning. The principle control key required is the Stop key, this

allows the user to exit from an I/O 'hangup'. The solution to this

problem is to leave the keyboard after each scan so that the column
containing the Stop key is still being scanned, this means that output
line PBS is left in an 'on' state. The I/O routines can then very simply

test for a depression of the Stop key by reading the input register of

port A on VIA No. 2. The Stop key routine is thus separated from the

rest of the keyboard scanning routines, the Stop key routine is in two
sections:

$F755 — this is part of the time function routine which is called in all

IRQ servicing routines, it updates the real time clock and checks the

Stop key. The contents of Port B of VIA No.2., are read, debounced to

make sure that the contents are stable and then stored in the Stop key

flag— location $91.

$F770 — this part of the routine is the main Stop key routine, it is

called by an indirect address stored in the Stop key RAM vector at

location $0328. This routine takes the contents of location $91 and
compares it with the value $FE if equal then the Stop key has been

201

TO TEST WHICH
BEEN PRESSED

1 REM *ROUTINE
2 REM *KEV HfiS

3 REM
4 REM
8 REM *WHIC:H KEV FRESSEIf'

3 REM
10 fl=PEEK<203>
11 REM
12 REM *SHIFV KEV DOWN?
14 REM
15 B=PEEK'::653)
16 REM
17 REM *:riECODE K
18 REM
20 K=0
25 IFR=39THENK=i
30 IFfl=4?THEHK=3
35 IFfl=55THENK=5
40 IFfl=63THENK=?
4Fi nOTOUZi
50 IFB>1THENE=0

60 PR I NT "FUNCTION KEV'K "PRESSED"
55 GOTO 10

FUNCTION

NUMBER

GOTO50
GOTO50
GOTO50
GOTO50

Fig. 30 — Program to use VIC function keys.

202

depressed. This initiates the clearing of the l<eyboard queue and I/O

channels prior to returning to direct mode operation. If the Stop key
has not been pressed then control returns to the calling routine.

$FEA9 — routine to handle an NMI interrupt, this is generated if the
"Restore" key is pressed, the "restore" function is only initiated if the
"Stop" key is also pressed. If both keys are pressed then a Basic warm
start is initiated by a jump to $0002.

Important memory locations used by the VIC keyboard.

$91 — Stop key flag set if Stop key depressed
$C5 — Key scan index

$C6 — Index to keyboard queue
$F5-$F6 — Indirect jump address to keys on table

$0200-$0258— Basic input buffer

$0277-$0280 — Keyboard buffer

$028A — Key repeat flag

$028D —Shift flag

028F-$0290 — Indirect jump address for keyboard table

$0291 —VIC mode (CBM key pressed?)

System subroutines used by keyboard.

$C560 — routine to get Basic command from the keyboard and
place in the Basic input buffer ready for the interpreter.

$CBBF— routine performs the Basic character string input function.

$E5CF— remove character from keyboard queue and return in .A

$E64F — input line until carriage return key is pressed, part of Basic
input routine.

$E742 — displays character in ,A on the screen at the current cursor

location.

$E800— handles shift keys

$EABF— IRQ service routine

$EB1E — general keyboard scan, uses keyboard character tables to

obtain correct ASCII code for character and puts character into

keyboard queue.

$EBDC— shift key logic

$EC5E— start of keyboard character table No. 1

.

$EC9F— start of keyboard character table No. 2.

$ECEO— start of keyboard character table No. 3.

$ED72— start of keyboard character table No. 4.

203

RS232 SERIAL COMMUNICATIONS

The VIC is able to communicate with peripheral devices; printers,

modems etc, using a serial communications port, known as an RS232
I/O port. The name RS232 simply refers to an industry standard form
of serial communication for computing devices. A serial I/O port can

consist of as few as three lines, an output or transmit line, an input or

receive line and a common ground line. The data is transmitted or

received as a stream of pulses, a single byte becomes a string of eight

pulses.

Although a serial port can have just three lines, other lines are

frequently used to transfer control information. The VIC is able to

receive and generate such control signals to implement a full 'X line'

interface as well as the simple '3 line' interface. Whichever
implementation is used all the lines are connected to I/O Port B of VIA
No. 1., the same lines used for the user port. Normally an RS232
interface card will be used to connect between the parallel port and a

standard RS232 connector, the card will also provide buffering and a

higher drive voltage. For communications using the simple 3 line

mode an interface card can easily be constructed using a couple of

buffer/driver ICs. The RS232 line normally transmits aata using a 12

volt signal, however, providing cables are kept short it will work with

a 5 volt signal. The standard RS232 connector is shown in Figure 32,

the function and pin assigment of each of these lines is as follows:

VIA RS232 VIA Abv EIA In/ Modes Function

line No. pin No . pin No Out

GND 1 A GND AA — 1,2 Protective ground

CB1 3 B SIN BB In 1,2 Received data

PBO 3 C SIN BB In 1,2 Connected to SIN

PB1 4 D RTS CA Out 2 Request to send

PB2 20 E DTR CD Out 2 Data terminal ready

PBS 18 F Rl CE In 3 Ring Indicator

PB4 8 H DCD CF In 2 Received line signal

PB6 5 K CTS CB In 2 Clear to send

PB7 6 L DSR CC In 2 Data set ready

CB2 2 M SOUTBA Out 1,2 Transmitted data

GND 7 N GND AB — 2,3 Signal ground

Modes:
1 — 3 -line interface (note RTS and DTR are both held high during this

mode).

2— X-line interface.

204

10 n 12

A B C D E L M N

SsS;:-:::: TVPfi Wff£ PIN TYPE RS232 FUNCTION

eiaO :v:-i<iS:S:: vKS:Si!6:;SSi: i^x^i^'K^i^i^Sxiiixyi:;:;:;::::

iiiii
+•5* l4ft«A MAX B

C

CBl

PBO 4. SINSESET

v::::*;:;::::: i&VH D PBl — RTS

:5::::^::v:-:: >(Jf^ E PB2 — DTR

::;:::::fe;:::::: 40VJ F PB3 — Rl

^xixyxl:::: LiGMr »£N H PB4 — DCD
ivx*::::::: 0A8-S£TTE SWICH ':-:->yfyWl immmrn
IWiM: 5ei3HAUAf*H.t» K PB6 — CIS

fi:::!^;:-:':': +«V JM-kA-WW L PB? — DSR
yyXmy. AND • M CB2 — SOUT
<:&:::: am

.

N GND — GND

Fig. 31 — VIC RS-232 connector and pin allocations.

OI4

OI5

016

OI7

OI8

OI9

O20
02I

022
023

024
02S

10

zo
30
40
50
60
70
80
90
100

no
I20

13O

PIN

1 Protective Ground AA
2 Transmitted Data BA
3 Received Data B8
4 Request To Send CA
5 Clear To Send CB
6 Data Set Ready CC
7 Signal Ground AB
8 Carrier Detect CF
9 (not used)

10 "

11
"

12
"

13
"

14 "

15
"

16
"

17 "

18
"

19 "

20 Data Terminal Ready CD
21 (not used)

22
23 "

24 "

25 "

Fig. 32 — Standard RS-232 connector and EIA line coding.

205

3 — User available only and not implemented or used in the VIC RS232
code.

The implementation of the RS232 port on the VIC is very interesting

since it involves the use of software to emulate a hardware device.

The hardware is the 6551 Universal Asynchronous Transmitter and

Receiver or UART. It was originally intended by the VIC designers to

use this chip to generate the RS232 I/O, however, MOS v/ere unable

to deliver usable devices in time for the VIC production, and software

emulation had to be employed. An exact emulation of the function of

the 6551 is used since this allows the manufacturers to change the VIC
hardware design to incorporate the 6551 as soon as this device

becomes available. Like the other I/O chips the 6551 functions are

controlled by registers at specific memory locations. The pseudo 6551

registers are located in various parts of the variable storage area at

the bottom of VIC memory. Besides the registers, the RS232
operating routines require two 256 byte buffers, one for received data

and the other for transmitted data. The 512 bytes of memory occupied

by these buffers is located at the top of available RAM memory, the

starting address of the two buffers is stored in four register bytes. The
two most important registers are the Control, and Command
Registers, these determine the exact operation of the RS232 port,

they can be summarised as follows:

The 6551 Pseudo Control Register— Hex $0293 decimal 659

The function of the Control register is to set the speed of data

transmission and reception and set the number of bits needed to

transmit each character. The speed at which data is input or output is

called the baud rate, and the value assigned to this is the number of

bits per second. If the baud rate is set to 300 baud, and each character

is transmitted as the eight character bits plus one stop bit and one
parity bit — total of ten bits — then 30 characters will be transmitted

every second. The selected baud rate depends on the specifications of

the device communicating with the VIC via the RS232 port, check the

manual of the device before setting this value. Bits 5, 6 and 7 control

the number of bits needed to transmit or receive data between the

VIC and a peripheral. The number of bits per character plus the

number of stop bits depends on the device communicating with the

VIC via the RS232 port.

The 6551 Pseudo Command Register— Hex $0294 decimal 660

The Command Register controls the mode of data transmission and

206

6 5

STOP BITS

0-1 STOP BIT
1-2 STOP BITS

WORD LENGTH

BIT DATA
WORD LENGTH6 5

8 BITS

1 7 BITS

1 6 BITS

1 1 5 BITS

UNUSED BIT

(Nl) Not implemented in the VIC-20 system

3 2 1

BAUD RATE

USER RATE (Nl)

1 50 BAUD

1 75

1 1 110

1 134.5

1 1 150

1 1 300

1 1 1 600

1200

1 1800 2400

1 2400

1 1 3600 (Nl)

1 4800 (Nl)

1 1 7200 (Nl)

1 1 9600 (Nl)

1 1 1 19200 (Nl)

Fig. 33 — Function of bits in VIC RS-232 Control register.

207

reception. Bit sets the mode, a 3 line mode or a X line mode. Bit 4 sets

the Duplex mode as follows:

Full Duplex— simultaneous transmission and reception of data.

Half Duplex— alternate transmission and reception of data.

Bits 5, 6 and 7 determine the nature of the parity bit and whether the

mark or space is transmitted. The parity bit is transmitted after the

data bits and has an error checking function, the choice of whether the

parity is disabled or is set to odd or even depends on the specification

of the communicating device attached to the VIC RS232 port. The
mark/space setting determines whether a logic '1' is transmitted as a

zero voltage or a positive voltage, this is shown in Figure 4.

The RS232 Status register— Hex $0297 decimal 663

The other memory locations and pseudo 6551 registers are as

follows:

$A7 — receiver input bit temporary storage

$A8 — receiver bit count in

$A9 — receiver flag Start bit check

$AA — receiver byte buffer/assembly location

SAB —receiver parity bit storage

$B4 — transmitter bit count out

$B5 — transmitter next bit to be sent

$B6 — transmitter byte buffer/disassembly location

F7-$F8 — a two byte pointer to the receiver buffer base
location

$F9-$FA — a two byte pointer to the transmitter buffer base
location

$0298 — the number of bits to be sent/received

$0299-$029A— the time for transmission of one bit cell based on
system clock/baud rate

$029B — the byte index to the end of the receiver FIFO buffer

$029C — the byte index to the start of the receiver FIFO buffer

$029D — the byte index to the start of the transmitter FIFO
buffer

$029E — the byte index to the end of the transmitter FIFO
buffer

208

PARITY OPTIONS

BIT

7

BIT

6

BIT

5
OPERATIONS

Parity disabled, none

Generated/Received

1

Odd Parity

Receiver/Transmitter

1 1

Even Parity

Receiver/Transmitter

1 1

MarkTransnnitted

Parity Check Disabled

1 1 1

Space Transmitted

Parity Check Disabled

DUPLEX
0= FULL DUPLEX
1 = HALF DUPLEX

UNUSED

HANDSHAKE

0= 3 LINE

1 = XLINE

Fig. 34 - Function of bits in VIC RS-232 Command register.

209

RS232 System Routine Entry Points

$EFA3 — entry for NMI continue routine

$EFBF — calculate parity, $B5 = upon entry

$EFE8 — count stop bits

$EFEE — entry to start of byte transnriission

$EFFB — set up to send next byte

$F01 6 — set errors

$F027 — calculate No. of bits to be sent, returns No. bits+1

$F036 — NMI routine to collect data into bytes

$F040 — calculate parity

$F046 — shift data bit in

$F04B — have stop bit so store in buffer

$F05B — enable to receive a byte

$F068 — receiver start bit check

$F06F — put data in buffer (at parity time)

$F08B — parity checking

$F094 — check calculated parity

$F09F — errors reported

$FOBC — output a file over user port using RS232
$F0C4 — check for DSR and RTS
$FOCD — check for active input, RTS will be low if currently

inputting

$F0D4 — wait for CTS to be off

$F0D9 —turn on RTS
$F0E1 —wait for CTS to go on

SFOED — buffer handler to output a character

$FOFC — set up if necessary to output

$F102 — set up for a first byte out

$F10E — setupforTI NMI's

$F1 1 6 — input a file over user port using RS232
$F122 —check if DSR and not RTS
$F1 2 B — wait for active output to be done

$F130 —turn off RTS

$F138 —wait for DCD to go high

$F1 3F — enable CB1 for RS232 input

$F146 — if not 3 line half then see if we need to turn on CB1

$F1 4F — input a character buffer handler

$F1 5C — receiver always runs

$F1 60 — protect serial/cassette from RS232 NMI's

210

PARITY ERROR BIT

FRAMING ERROR BIT

RECEIVER BUFFER OVERRUN BIT

UNUSED

CTS SIGNAL MISSING BIT

• UNUSED

• DSR SIGNAL MISSING BIT

— BREAK DETECTED BIT

RS-232 STATUS REGISTER -$0297

Fig. 35 - Function of bits in VIC RS-232 Status register.

211

Using the RS232 Port

Opening an RS232 Channel

Basic Syntax: OPEN If, 2, 0, "(control register) (connmand

register)"

If _ Normal logical file ID (1-255). If lf)127 then line feed follows

carriage return

(control register) — an ASCII character equivalent to the required

bit setting of the Control Register. Example; to set baud rate to 300

and transmit 7 bit code use CHR$(6+32) — this sets bits 1, 2 and 5 to

logic
'1

' and leaves the rest at logic '0'.

(command register) — an ASCII character equivalent to the required

bit setting of the Command Register. Example: to set the output to

mark parity and full duplex use CHR$(32+128) — this sets bits 5 and 7

to logic
'1

' and leaves the rest at logic '0'.

Machine Code Entry Point: Hex $FFC0

Notes on Usage: Only one RS232 channel should be open at any

time, since the OPEN statement resets the buffer pointers, a second

OPEN will destroy any data in the buffers set up in the first OPEN. The

OPEN RS232 channel command should be used before any variable or

DIM statements, failure to do this will cause wiping of data. This is

because the OPEN RS232 channel command performs an automatic

CLR before allocating the 512 bytes at the top of memory used for the

two RS232 data buffers. If there is insufficient space at the top of

memory for the 512 byte buffer then program destruction will result.

The file name field in the OPEN command statement can have up to

four characters, only two characters are currently used by the system

(see Basic syntax) the other two characters are for future systems

options. No error checking is done by the system on the contents of

the control or command characters, errors in baud rate selection will

cause system malfunction. A non-implemented baud rate will cause

an index to bad page data, and output will be set to a rate below 50

baud.

212

Receiving Data From an RS232 Channel.

Basic Syntax; GET # If, (string variable)

If
— logical file ID used in OPEN RS232 channel command

Machine Code Entry Points;

$PPC6 — Open channel for Input. Handles full X-line implementation

according to EIA standard RS232C interfaces. The RTS, CTS and DCD

lines are implemented when the VIC is designated as a Data Terminal

device.

$FFE4— Get character from buffer

Notes on Usage; Received data is put into the VICs 255 byte

internal receiver buffer set up during the OPEN RS232 channel

command. Data input is under control of the 6522 timers and

interrupts and is performed in the background during the running of a

Basic program. This is done by having the RS232 data input line

connected to the CB1 handshake line, an input on CB1 will generate

an NMI system interrupt. The use of NMI interrupts is the reason why

the cassette and serial bus should not be used during RS232 data

communications. The NMI interrupt will call the serial data input

routines whenever data is present on the RS232 input. These routines

will place the received data into the 255 byte receiver buffer located at

the top of RAM memory. If the input data has a word width less than

eight bits then all unused bits will be filled with zero.

The receiver buffer is organised as a First In First Out — FIFO —
buffer. The buffer removes the necessity for Basic to wait for data

input before processing each byte of data. Instead the Basic program

can take data from the buffer when it needs it rather than when it is

presented. Basic accesses the buffer using the GET command to

transfer a single byte of data into a Basic variable. If there is no data in

the buffer then the GET # command will return with a null

character. If the buffer should overflow then all characters received

during the overflow condition are lost, an overflow condition is

indicated by bit 2 in the RS232 Status register being set. An overflow

condition will frequently result, if an attempt is made to input data at

fairly high data rates using Basic. This is because Basic is normally

slow and the use of the GET command with string concattination will

give rise to frequent garbage collects. Machine language routines are

best used for data rates above the normal 300 baud.

213

Transmitting Data to an RS232 Channel

Basic Syntax: CMDIf
PRINT # If, (variable list)

If— logical file ID set up in the OPEN RS232 channel comnnand

Machine Code Entry Points-

$FFC9 — Open channel for output. This handles X-line handshaking

for the innplementation of an EIA standard RS232 interface. The RTS,

CTS, and DCD lines are implemented with the VIC as a Data Terminal.

$FFD2— Output character to channel

Notes on Usage: When either one of the two Basic commands are

used data is first transferred from the assigned string or memory block

to the 255 byte transmitter buffer. From here it is output to the RS232

channel using the format and baud rate assigned in the OPEN RS232

channel command. Data output is transparent to the operation of

Basic since the timing is done by the 6522 timers and output of each

byte initiated by an NMI system interrupt. As with data input on the

RS232 the cassette or serial IEEE port should not be used during data

transmission on the RS232 otherwise interrupt conflicts will occur.

There is no carriage return delay implemented by the output channel,

therefore a normal RS232 printer cannot correctly output the data,

unless some form of internal buffering or other hold-off is

implemented by the printer. If a CTS handshake is implemented (in

the X-line mode) then the VIC buffer will fill, and output will not

occur until transmission is allowed by an input on CTS.

Closing an RS232 Data Channel.

Basic Syntax: CLOSE If

If— logical file ID set up in the OPEN RS232 channel command

Machine Code Entry Points

$FFC3— Close logical file

Notes on Usage: Closing the RS232 file causes all the data in the

buffers to be discarded, stops data transmitting or receiving, sets the

214

RTS and SOUT lines high, and de-allocates the mennory area used for

the RS232 buffers. Closing the RS232 file will also allow the cassette

or serial IEEE ports to be used. Before closing the channel care should

be taken to ensure that all data in the buffer is transnnitted. This can be

done by checking the status (ST variable is = 0) and that bit 6 of

parallel Port A of VIA No. 1 location 37151 is set to logic 1, if both are

true then there is still data in the buffer.

215

THE JOYSTICKS

Two different types of joysticks can be attached to the VIC, a simple

paddle switch joystick, and a potentionneter joystick. The principle

application for joysticks is in interactive games and simulation

programs. The joystick is used to control the position of an object on

the screen, this can be either the cursor or a special graphics character

or characters. Alternatively the cursor can be used to change the

viewing position, using the joystick like the control stick on an

aircraft. The choice of which type of joystick is used depends on

whether fine positional control or simple left, right, forward or

backward input is required. If fine positional control is required where

a particular joystick position has a unique value, then a potentiometer

joystick is required. If simply telling the computer the direction of the

joystick movement, using one of eight directions is adaquate, then a

switch joystick is the best choice.

Switch Joystick

A switch joystick consists of four switches mounted at right angles

to each other. The joystick handle is connected to a mechanism which

allows no more than two adjacent switches to be closed at any one

time. The joystick handle has nine possible positions:

one with no switches closed— the handle is vertical

four positions with one switch closed— handle in north, south,

east, and west positions.

four positions with two switches closed — handle in north east,

south east, south west, and north west positions

An extra switch is usually mounted on the end of the joystick

handle, called the 'Fire button'. This is usually used to indicate to the

computer when the cursor or games figure is in the right position on

the screen. Each of the switches is connected to one of the I/O lines

from the 6522 VIAs. The joystick switches are arranged as follows;

Button' Switch 4 Switch TOP (north)

Switch 2- -Switch 3

Switch 1

216

PIN TYPE NOTE

1 JOYa

2 J0Y1

3 J0Y2

4 J0Y3

5 POT Y

/M^Ww^ Stlfiiiiili:^©!:;:;

7 + 5V MAX. lUBmA

8 QND

9 POT X

Fig. 36 - The allocation and function of pins on the Joystick connector.

+5V

100 k ohm

POT X or

POT Y input*

•Imfd

GND

Fig. 37 — Potentiometer joystick circuit.

217

Switches 0, 1 and 2 and the 'Fire button' are connected to lines from

VIA No. 1., and switch 3 to a line from VIA No. 2. The VIA memory
locations used by the switch joystick are as follows:

Hex Decimal Function

$9113 37139 Data Direction Register for Port A VIA No. 1.

$9111 37137 Output Register A

bit 2— joystick switch

bit 3— joystick switch 1

bit 4— joystick switch 2

bit 5— 'Fire button'

$9122 37154 Data Direction Registerfor Port B VIA No. 2.

$9120 37152 Output Register B

bit 7— joystick switch 3

To read the joystick switch inputs the I/O lines used must first be set

into the input mode. Achieved by setting the corresponding bit of the

Data direction Register to 0. This poses one problem, the line used for

joystick switch 3 is also used for scanning the keyboard. Thus the

keyboard can not be used in full at the same time as the switch

joystick, and the Data Direction Register should always be restored

to normal after the joystick is used. The following program can be

used to initialise the Data Direction Registers and input the switch

position.

10POKE 37139,0 : POKE 37154,127 : setupDDRs
20 S = PEEK (37137): inputfrom VIA No. 1.

30 SO = ((SAND 4)=): switch

40 SI = ((SANDS): switch 1

50 S2 = ((S AND 16) = 0) : switch 2

60 F = ((S AND 32) = 0) : 'Fire button'

70 S = PEEK (371 52) : input from VIA NO. 2.

80 S3 =— ((S AND 1 28) = 0) : switch 3

90 POKE 371 54,255 : restore keyboard function

The variables SO, SI, S2 and S3 will normally be but if the joystick

handle is pointed in that direction their value will be either 1 or — 1 . If

the 'Fire button' is pressed then the variable F will have a value of 1,

218

otherwise it will be 0, These variables can be used to decode the

the joystick into the following pattern

:

TOP

7 1

6 8 2

5 3

4

The following program lines will convert the variables SO, SI
,
S2

and S3 into the values shown in the pattern which correspond to the

handle position and store in variable P:

1 00 DATA 7, 0, 1 , 6, 8, 2, 5, 4, 3 : data for joystick pattern

110FORI=0TO2
120FORJ = 0TO2
1 30 R EAD JS (J , I) ; put joystick pattern i nto array

140 NEXT J, I

150X = 1+(S2 + S3);Y = 1+(S0 + S1)

1 60 P = JS(X, Y) : set P to joystick pattern value

Potentiometer Joystick

A potentiometer joystick consists of two potentiometers mounted

at right angles to each other in a mechanism which allows the joystick

when moved to change the wiper position on one or both

potentiometers. One potentiometer registers the joystick movement

in the X axis, the other in the Y axis. The rotational movement of each

potentiometer is divided by the computer into 255 divisions. With the

joystick centered vertically the X and Y potentiometers will each have

a value of 128. The position of the joystick can thus be mapped in

terms of graph co-ordinates, thus;

219

X AXIS POTENTIOMETER

255 (top)

128
Y AXIS 255
POTENTIOMETER

•0 (right)

128

(bottom)

The two potentiometers are connected together with a small

amount of additional circuitry to two special inputs on the 6561 VIC

chip, their pin assignations on the output connector are shown in

Figure 36, The input to the 6561 is used to convert the potentiometer

position into a microprocessor readable 8-bit number. This is

accomplished by a simple RC time constant integration technique.

The potentiometer is used to charge an external capacitor connected
to one of the pot pins and ground. This simple circuit is shown in

Figure 37.

The 6561 converts the potentiometer position into a value which
the processor can read by accessing one of the two potentiometer

registers, the memory location of these two registers is;

Hex $9008 decimal 36872— digitised value of POT X
Hex $9009 decimal 36873— digitised value of POT Y

The value stored in these two registers can be accessed simply

using PEEK or LDA commands.

220

THE MEMORY EXPANSION CONNECTOR

The memory expansion connector allows additional memory or I/O

to be added to the VIC. The 44 line connector gives external

equipment access to the VIC system data bus and address bus plus

the necessary control lines. These connections are shown in Figure d».

The connector required to attach equipment to the expansion

connector is a 44 pin (22/22) male edge connector with a ^156 inch

connector separation (a double sided etched PC board can be used).

The user must exercise great care when interfacing equipment to

these lines since they are not buffered and any malfunction of the

external equipment may damage the VIC. The memory expansion

port lines can be divided into five groups:

Data Bus — the eight data lines used to transfer data between

processor and memon/.

Address Bus — the fourteen least significant address lines are

available they allow any memory location in an 8K block to be

accessed by the processor. Which of the 8 memory blocks is accessed

depends on the block select lines.

Control Bus — the six control lines govern system clock, IRQs, Reset,

and R/W select.

Block Select — there are nine block select lines, these are generated

by partly decoding the most significant address lines. They are used

to select the block of memon/ or I/O addressed by the I/O bus.

Power Lines — power output is available at +5 volts and Ground,

the power rating is approximately 750ma.

The signals available on the memory expansion connector are as

follows;

Name Pin No. Description

GND 1 System Ground

GDO 2 Data bus lineO

GDI 3 Data bus line 1

CD2 4 Data bus Iine2

CD3 5 Data bus line 3

CD4 6 Data bus Iine4

CD5 7 Data bus line 5

221

MEMORY EXPANSION

12 3 4 5 6 7 8 9 10111213141516171819202122
rm-m-r

ABCDEFHJ KLMNPRSTUVWXYZ

PIN# TYPE

1 GND
2 CDd
3 GDI
4 CD2
5 CDS
6 CD4
7 CD5
8 CDS
9 CD7
10 BLK1

11 BLK2

PIN# TYPE

12 BLK3
13 BLK5
14 RAMI
15 RAM2
16 RAM3
17 VR/W
18 CRM
19 IRQ

20 NC
21 + 5V

22 GND

PIN# TYPE

A GND
B CA0
C CA1

D CA2
E CA3
F CA4
H CAS
J CA6
K CA7
L CAS
M CA9

PIN# TYPE

N CA10
P CA11

R CA12
S CA13
T 1/02

U 1/03

V S02

w NMI
X RESET
Y NC
z GND

Fig. 38 — The allocation and function of pins on the Memory Expansion

connector.

222

CD6 8

CD7 9

BLK1 10

BLK2 11

BLK3 12

BLK5 13

RAMI 14

RAM2 15

RAMS 16

VR/W 17

CR/W 18

IRQ 19

(NO 20

4-5V 21

GND 22

GND A
CAO B

CA1 C
CA2 D
CAS E

CA4 F

CAB H
CA6 J

CA7 K

CAS L

CA9 M
CA10 N
CA11 P

CA12 R

CA1S S

1/02 T

1/03 U

S02 V
NMI W
RESET X

(NO Y
GND Z

Data bus line 6

Data bus line 7

8K decoded RAM/ROM block 1 , starting at $2000,

(active low).

BK decoded RAM/ROM block 2, starting at $4000,

(active low).

8K decoded RAM/ROM block 3, starting at $6000,

(active low).

8K decoded ROM block 5, starting at$A000

(active low).

1 K decoded RAM at $0400, (active low).

1 K decoded RAM at $0800, (active low).

1 K decoded RAM at $OC0O, (active low).

Read/Write line fronn VIC chip, (high = read

low = write).

Read/Write line from CPU. (high = read,

low = write).

6502 IRQ line, (active low).

+5 volt power line.

System Ground.

System Ground.

Address bus line

Address bus line 1

Address bus line 2

Address bus line 3

Address bus line 4

Address bus line 5

Address bus line 6

Address bus line 7

Address bus line 8

Address bus line 9

Address bus line 10

Address bus line 1

1

Address bus line 12

Address bus line 13

Decoded I/O block 2, starting at $9130

Decoded I/O block 3, starting at $9140

Phase 2 system clock

6502 NMI line, (active low)

6502 RESET line, (active low)

System ground

223

THE SERIAL IEEE PORT

This is a very cut-down version of the IEEE-488 port available on PET

computers. In the normal IEEE, bus data is transferred in parallel form

on eight data lines. In the VIC implementation, it is transferred serially

on a single line. The VIC IEEE bus consists of just six lines, three output

and three input. The three input lines carry data and control pulses

from a communicating device to the VIC, the three output lines have

an identical function, and output data from the VIC to the peripheral

device. The three lines consist of a serial data line, a clock line to clock

pulses off the data line, and a service request or attention command

line. The functioning of the serial IEEE port on the VIC is very

rudimentary compared to the IEEE implemented on the PET, but is

adequate for many applications requiring communications between

the VIC, and, either a peripheral device, other VICs or a larger

computer. If the full IEEE-488 bus is required then the IEEE-488

expansion module should be used. This is very useful if one wishes to

connect the VIC to other IEEE-488 devices, in particular the PET

peripherals.

Definition of the IEEE port

An IEEE-488 type port, whether the simple serial port available on

the unenhanced VIC, or the full implementation of the expansion

module, has considerable advantages over a serial RS232 port or a

parallel user port. The advantage is that an IEEE-488 type port is

capable of communicating with more than one device connected to a

single set of I/O lines. It does this by means of the control lines and a

strict protocol of commands between the listening device and the

talking device. There are three classes of device which can be

attached to the lEE bus, they are:

Controller— one device which controls bus operation

Listener— a device receiving data from the bus

Talker— a device transmitting data onto the bus

With the existing operating system software in the VIC, only the VIC

can act as a controller, though it can also act as either a listener or

talker. All the peripheral devices can be either listeners or talkers,

though only one device at a time may be a talker on the bus, Figure40

shows how the VIC and peripheral devices communicate via the IEEE

bus. The 'controller' as its name implies controls the data transfer

along the bus, and determines which devices act as 'listeners' and

which device is the 'talker. It does this by individually addressing each

224

PIN4te TYPE

1 SERIAL SRO IN

2 ONO

3 SERIAL ATN IN/OUT

4 SERIAL OLK IN/OUT

5 SERIAL DATA IN/OUT

6 NC

Fig. 39 - The allocation and function of pins on the IEEE Port connector.

VIC — Controller

Data in/ out

Clock

GND
SRQ
ATN

Disk Drive

— talker or

— listener

Printer

— listener

Fig. 40 — The interconnection of devices via the serial IEEE port.

225

device and sending it a set of comnnands, these set the device as

either a 'listener' or 'talker' and in addition can control other functions

of the device. Each device has its own unique address code which is

usually defined in the devices electronic hardware, the device

numbers can be any value between 4 and 30. Having set up the

direction of a data transfer of each device and its mode of operation

the 'controller' sends out a command to initiate data transfer. When

that data transfer is completed the 'talker' sends a command to the

'controller' which then sends commands to the bus devices which

disables them as either 'talkers' or 'listeners'.

The senal IEEE port connections.

The SIX I/O lines of the VIC senal IEEE port are derived from the two

6522 peripheral I/O chips. The following table shows the derivation of

each line.

VIA No. line No. Line function

VIA1 PA1 Serial data in

VIA 2 CB2 Serial data out

VIA! PAO Serial clock in

VIA 2 CA2 Senal clock out

VIA1 PA7 Serial ATM out

VIA 2 CB1 Serial SRQ in

The output connector and the circuit used to input and output these

lines is shown in Figure39. It should be noted that the 'ATN in' line is

not implemented and is simply connected to pin 9 of the user port

connector. If 'ATN in' is required then the user should connect pin 9 to

one of the unused user port handshake lines and write the

appropriate software to handle an 'ATN in' input.

Using the Serial IEEE Port.

Whether the IEEE port on the VIC is the simple serial port on the

unexpended machine or the full implementation using the external

IEEE-488 module the Basic command syntax is identical. The

differences lie in the way the data is transmitted. The commands in

the following synopsis can be used with either mode of IEEE data

transmission, providing that the device or devices communicating

with the VIC over the bus are capable of the selected type of

communications.

226

Opening an IEEE channel.

Basic Syntax: OPEN If, d, sa, "fn"

If_ Normal logical file ID (1-255).

d _ Device number (4-30). This selects the device to receive this

command sequence. A different device number is allocated to each

device communicating with the VIC via the IEEE bus.

3a _ Secondary address (0-31). This code value is used to determine

the operating mode of an intelligent peripheral. By changing the

secondan/ address the operating characteristics of the device can be

changed, the value used and its operation will be unique to the

addressed device.

"fn" _ File name string. The file name field is an extension of the

secondary address and is principally used when communicating with

storage devices such as tape and disk drives. The file name field can

be either a string, or string variables up to 128 characters long, and is

used to specify a data item or a file name The use of a file name and

the syntax used to construct the string is dependant on the device

addressed.

Function of the OPEN Command
The OPEN command selects a device that has a value between 4

and 30 and the operating system assumes that the device is an IEEE

device. If no file name or secondary address is specified then nothing

is communicated to the peripheral devices from the VIC 'controller'.

The operating system takes the variables in the OPEN command and

stores them in the file tables. However, if a file name is specified the

operating system, sends a 'listen attention' sequence to the device

specified in the OPEN command. The secondary address is also

transmitted with the file name as the hexadecimal or of $F0 and the

secondary address specified in the OPEN command. The VIC

operating system allows up to ten logical files to be opened at any

one time.

Machine Code Entry Points for Serial IEEE.

Set logical, first, and second address — $FFBA

Set file nanne — $FFBD

Open command routine — $FFC0

227

a
in
in

"I .
-

I ::.

I

I
~

I

I

O)

o

3
o

i

o
o.

(J

>

c
o
(A
V
c

c
o
u
T3
c
(0

CD
•M
ID
TJ
M-
o
£
o

>
(D

>
o
I-

<
Q

>

o

3
o

228

Receiving Data From an IEEE Channel

Basic Syntax; either INPUT # If, V
or GET# lf,V

If
— Logical file ID specified for the device in the OPEN command.

V— Input data stored in variable V or V$.

The INPUT # command accepts characters from the peripheral

and builds them up into the vanable V. This continues until the

delimiter character is received. The delimiter character is a carriage

retum (CHR$ 13) and marks the end of the input. The vanable stnng is

built up in the Basic input buffer, this has a maximum length of 88

characters an input string should therefore not exceed 88 characters

between carriage returns. The GET # command is used to get a

single character from the bus, no delimiter is needed. The btl

command is also not subject to the 88 character buffer limitation and

can be used to input or output string greater than 88 characters.

IEEE Device Input Sequence and Function.

All INPUT # and GET # commands go through the same

The IEEe' initiation routine is first called, this sends a Talk Attention'

sequence to the device, followed by the secondary address specified

for that logical file in the OPEN command. At the end of the 'Attention

sequence the VIC establishes itself in the 'listener' mode and waits for

a signal from the addressed device, indicating that a single character

has been received. If this signal is not received within 64ms then an

error is generated and the correct code stored in the status byte,

variable ST If the signal is received within the timeout penod then

control is passed to the IEEE input routine. The IEEE input routine gets

a single character from the bus using the clock line to clock each bit oft

the senal data input line. If during the course of inputting data an EOl

signal is received then the IEEE routine will set the EOl status flag, this

indicates that the next byte is the last byte. This calls the termination

'Untalk' routine which returns command to the keyboard and sends

an 'Untalk' command to the IEEE bus thereby freeing the bus for the

next command Figure 41 and 42 show the flow of data between the

VIC and the serial IEEE bus devices with the relevent pulse sequence

and timings.

229

Machine Code Entry Points For Serial IEEE Input Routines:

Command serial bus device to Talk— $FFB4

Send secondary address after Talk— $FF96

Input byte from serial IEEE port— $FFA5
Command serial bus to Untalk— $FFAB
Set timeout on IEEE bus— $FFA2

Transmitting Data to an IEEE Channel.

Basic Syntax; PR INT# lf,V

If— Logical file ID specified for the device in the OPEN command.

V— Output data stored in variable V or V$.

IEEE Output Sequence and Function.

The PRINT # , command first calls a routine which sends a 'Listen

Attention' command to the addressed device on the bus, this sets that

device as a 'listener'. This is followed by the secondary address byte

specified for that logical file in the OPEN command. The VIC expects a

response signal from the listening device within 256 jjs otherwise a

device not present error is signalled. The IEEE output routine then

transmits the data in the variable bit by bit down the serial output line

together with synchronising clock pulses. The output data is stored in

the Basic buffer prior to transmission, and it is from here that the

output routine accesses each byte. When the last byte of data to be

transmitted is reached the VIC sends an EOl signal to the listener to

warn the listening device that transmission is about to end. Having

transmitted this last byte the VIC sends an 'Unlisten' command to the

bus and restores output to the screen. This frees the bus for the next

operation. Figures 41 and 42 show the flow of data between the VIC

and a serial IEEE peripheral device, together with the pulse sequences

and timings.

Machine Code Entry Points for Serial IEEE Output Routines

Command serial bus device to Listen— $FFB1

Send secondary address after Listen— $FF93

Output byte to serial IEEE port— $FFA8
Command serial bus to Unlisten— $FFAE

Set timout on IEEE bus— $FFA2

230

Closing an IEEE Channel.

Basic Syntax: CLOSE If

If
— Logical file ID specified in OPEN command.

IEEE Named Device Closure.

When an IEEE file which was opened with a file name is closed a

special command sequence is generated. This command sequence

sends the secondary address from the OPEN command ORed with

hexadecimal $E0 to the device specified. This allows special file

closure commands to be sent to intelligent peripherals.

Machine Code Entry Point for Serial IEEE Close Routine.

Close named IEEE device— $FFC3

Other IEEE Commands ,^.r.r^A<,r ^
There are three special IEEE commands, they are: LOAD, SAVE, and

CMD. The first two are concerned with the transfer of programs

between the VIC and a peripheral device on the IEEE bus. The last

command CMD, is a special form of the PRINT No., command. All

three commands should be preceded and followed by the OPEN and

CLOSE command specifying the device number to be accessed. The

function and syntax of these three commands is as follows:

Load program from IEEE device.

Basic Syntax: LOAD fn, d, sa

fn _ File name of program to be loaded into the VIC memory, may

contain optional commands to the addressed device such as disk

drive number. The file name and optional device directive should be

enclosed in quotes.

d Device number defined in the OPEN command.

ga— Optional secondary address command.

The first two bytes of data retreived in a LOAD command contain

the starting address of the program.

231

Save program on IEEE device.

Basic Syntax: SAVE fn, d, sa

fn — File name of program to be saved on peripheral device. The file

name should be enclosed in quotes and may contain an optional

command to the addressed device eg: disk drive number.

d— Device number defined in the OPEN command,

sa— Optional secondary address command.

The starting address of the program in VIC memory is transmitted

in the first two bytes of data.

The CMD command.

Basic Syntax: CMD If, V

If_ Logical file ID specified for the device in the OPEN command.

V— Output data stored in variable V or V$.

The CMD command is virtually identical to the PRINT No.,

command, except that at the end of data transfer the unlisten routine

is not called, thereby leaving the device to be commanded by a CMD
as the primary output device for Basic. PRINT or LIST commands are

then directed to this device rather than to the video screen. The most

frequent use of CMD is in obtaining printed program listings. The

CMD command is terminated by a PRINT No., command being

executed.

Important memory locations used by the VIC serial IEEE port.

$90 — The I/O status flag

$94 —IEEE buffered character flag

$95 —IEEE buffered character

$97 —Temp for IEEE input

$98 —Pointer to file table

$99 — Input device No.

$9A —Output CMD device

$A3 — Serial bit cont/EOI flag

$A4 — Cycle counter for serial I/O

$B7 — Length of current file name string

$88 — Current logical file number

232

®
Dout -*high

TALKER

Dout

Timeout Error

Device not Present

Cout -> low

Cout

Output data

byte

Dout

Din

Cout

Din

233

Din

Dout

Cin

Dout

Cin

Din

Dout

LISTENER

Dout -> low

Dout -» high

Cin
^L

no
^s„^^^ after 256ps J^ VIC is asserting EOl

Dout

*

^ yes V

- Dout -» low 32ps

Dout
1

'

- Miyii

Input data byte

Dout -» low

Delay 60>js

Dout & Cout -» high

Fig. 42 — Flow diagrams of data input and output sequence

in IEEE port communications. 234

$B9 — Current secondary address

$BA — Current device number

jgB — Address of current file name string

$0200 — 88 byte Basic input buffer

$0259 — Logical file number table, 1 bytes

$0263 — Device number table, 1 bytes

$026D — Secondary address table, 1 bytes

$0285 —IEEE timeout flag

System subroutine locations for serial lEEE

$E4A0 — Set data line high

$E4A9 — Set data line low

JE4B2 — Debounce PIA and shift clock to carry

$££14 —Command serial bus device to talk

$EE17 — Command serial bus device to listen

$E£40 _ Output a byte from serial bus

$EE6F — Set to send data

$EEC0 — Send secondary address after listen

$EEC5 — Release attention after listen

$EECE — Talk second address

$EED3 —Talk attention

$EEE4 — Buffered output to serial bus

JEEP6 _ Send untalk command to serial bus

j£P04 _ Send unlisten command to serial bus

$EF19 —Input a byte from serial bus

$EF84 —Set clock line high

$EF8D — Set clock line low

$EF96 —Delay 1ms

Vector jump addresses for serial IEEE

$PP93 _ Send secondary address after listen

$PP96 _ Send secondary address after talk

$FFA2 — Set timeout on IEEE bus

$FFA5 — Input byte from serial IEEE port

$FFA8 — Output byte to serial IEEE port

$FFAB — Command serial bus device to untalk

$PPAE _ Command serial bus device to unlisten

$PPB1 — Command serial bus device to listen

$PFB4 _ Command serial bus device to talk

$FFBA — Set logical, first and second address

235

$FFBD — Set file name
SFFCO — Perform OPEN command
$FFC3 — Perform CLOSE command

236

Appendix# 1

Table of CBM Codes

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL

00 e end- line BRK

1 01 A ORA(I,X) 1

2 02 B 2

3 03 C 3

4 04 D 4

5 05 E ORA Z 5

6 06 F ASL Z 6

7 07 G 7

8 08 H PHP 8

9 09 I ORA # 9

10 OA J ASL A 10

11 OB K 11

12 OC L 12

13 OD car ret M ORA 13

14 OE N ASL 14

15 OF 15

16 10 P BPL 16

17 11 cur down Q ORA (I) ,

Y

17

18 12 reverse R 18

19 13 cur home S 19

20 14 delete T 20

21 15 U ORA Z,X 21

22 16 V ASL Z,X 22

23 17 W 23

24 18 X CLC 24

25 19 Y ORA Y 25

26 lA Z 26

27 IB [
27

28 IC \ 28

29 ID cur right] ORA X 29

30 IE \ ASL X 30

31 IF -— 31

32 20 space space space JSR 32

33 21 ; : 1 ANDd.X) 33

34 22 " " " 34

35 23 # 1^ # 35

36 24 $ $ $ BIT Z 36

37 25 % % % AND Z 37

38 26 t> & & ROL Z 38

39 27
' 39

40 28 ((PLP 40

41 29)) AND 41

42 2A * * ROL A 42

43 2B + + 43

44 2C ,
,

BIT 44

45 2D - - AND 45

46 2E .
ROL 46

47 2F / / 47

48 30 9 9 BHI 48

49 31 1 1 1 AND(I),Y 49

237

DECIMAL HEX ASC

50 32 2

51 33 3

52 34 4

53 35 5

54 36 6

55 37 7

56 38 8

57 39 9

58 3A

59 3B
;

60 3C

61 3D =

62 3E

63 3F O

64 40

65 41 A

66 42 B

67 43 C

68 44 D

69 45 E

70 46 F

71 47 G

72 48 H

73 49 I

74 4A J

75 48 K

76 4C L

77 4D M
78 4E N

79 4F

80 50 P

81 51 Q
82 52 R

83 53 s

84 54 T

85 55 U

86 56 V

87 57 w

88 58 X

89 59 Y

90 5A Z

91 5B

92 5C

93 5D

94 5E

95 5F

96 60
97 61

98 62

99 63

6502 PECIMAL.

,d

51

52
AND Z X 53

ROL Z X 54

55
SEC SB
AND Y 57
CLI 58

59

60
AND X 61
ROL X 62

63

RTI 64
EOR(I, X) 65

66
67
68

EOR Z 69
LSR Z 70

71
PHA 72
EOR W 73
LSR A 74

75

JMP 76
EOR 77
LSR 78

79

BVC 80

EOR (I) ,Y 81

82

83

84

EOR Z, X 85
LSR Z, X 86

87
CLI 88
EOR Y 89

90
91
92

EOR X 93
LSR X 94

95
RTS 96
ADC(I X) 97

98
99

238

npr'TMiT. HEX ASCII SCREEN BASIC 6502 DECIMAL

100 64 n
ADC Z

100
101

101 65 ^ RCR Z 102
102 66 I 103
103 67 Zl PLA 104
104
105

68
69 P ^ ADC #

RCR A

105

106
106 6A ~1

107
107 6B IE JMP(I) 108
108
109

6C

6D ^
ADC
ROR

109

110
110 6E X 111
111 6F ^ BVS 112
112

113

70
71 £ ADC(I),Y 113

114
114 72

115
115 73 116
116 74

ADC Z.X 117
117 75

ROR Z,X 118
118 76

119
119

120

77

78
SEI

ADC Y

120

121
121 79

.

122
122 7A 123
123
124

125

126

78

7C

7D
7E

T
r

ADC X

ROR X

124

125

126

127
127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

7F

80

81

82

83
84

85

86

87

88

89

8A

8B

8C

8D car ret

1 -0
r-A
r-B
r-C

r-D
r-E

r-F

r-G
r-H
r-I

r-J
r-K

r-L

r-M

END
FOR
NEXT
DATA
INPUT #
INPUT

DIM
READ
LET
GOTO
RUN
IF

RESTORE
GOSUB

STAd.X)

STY Z

STA Z

STX Z

DEY

TXA

STY

STA

128
129

130

131

132

133

134

135

136

137

138

139

140
141

142

143

144

145

146

147

148

149

8E

8F
90
91

92

93
94

cur up

TVS off

clear
insert

r-N

r-0
r-P

r-Q
r-R
r-S

r-T

RETURN
REM
STOP

ON

WAIT
LOAD
SAVE

STX

BCC

STA(I),y

STY Z,X

142

143

144

145

146

147

148

95 r-U VERIFY STA Z,X 149

239

DECIMAL HEX

150 96
151 97
152 98
153 99

154 9A

155 9B
156 9C

157 9D
158 9E

159 9F

160 AG

161 Al

162 A2
163 A3
164 A4
165 A5
166 A6

167 A7
168 A8
169 A9

170 AA
171 AB
172 AC

173 AD

174 AE

175 AF
176 BO
177 81

178 B2

179 33
180 B4

181 B5

182 86

183 B7

184 B8
185 B9

186 BA

187 BB

188 BC
189 BD
190 BE

191 BF
192 CO
193 CI

194 C2
195 C3
196 C4
197 C5
198 C6
199 C7

ASCII _S£B££N_ BASIC §?Q8 PECIMAl^

0

o

,b

, c

,d

,e

,f

.g

r-V DEF STX Z,Y 150
r-W POKE 151

r-X PRINT # TYA 152
r-Y PRINT STA Y 153
r-Z CONT TXS 154
r-[LIST 155
r-\ CLR 156

r-l CMD STA X 157

r-t SYS 158

r- - OPEN 159

^ CLOSE LDY # 160
r-: GET LDAd.X) 161

r-" NEW LDX # 162

T-j^ TAB(163
r-$ TO LDY Z 164
r-% FN LDA z 165
r-& SPC(LDX z 166

r-

'

THEN 167

r-< NOT TAY 168
r-) STEP LDA # 169
r-* + TAX 170
r- + - 171
r-

,

* LDY 172
r

—

/ LDA 173
r-

.

LDX 174

r-/ AND 175
r-0 OR BCS 176
r-1 LDA (I) ,

Y

177
r-2 = 178
r-3 179
r-4 SON LDY Z,X 180
r-5 INT LDA z,x 181

r-6 ABS LDX Z,Y 182
r-7 USR 183
r-8 FRE CLV 184
r-9 POS LDA Y 185
r-

;

SQR TSX 186

r-; RND 187
r- LOG LDY x 188
r-= EXP LDA X 189
r- COS LDX Y 190
r-? SIN 191

TAN CPY w 192
ATN CMP(I),X 193
PEEK 194
LEN 195
STR$ CPY z 196
VAL CMP z 197
ASC DEC z 198
CHRS 199

240

DECIMAL HEX

200 C8

201 C9

202 CA

203 CB

204 CC

205 CD

206 CE

207 CF

208 DO

209 Dl

210 D2

211 D3

212 D4

213 D5

214 D6

215 D7

216 D8

217 D9

218 DA

219 DB

220 DC

221 DO

222 DE

223 DF

224 EO

225 El

226 E2
227 E3
228 E4

229 E5

230 E6

231 E7

232 E8
233 E9
234 EA

235 EB
236 EC
237 ED
238 EE

239 EF

240 FO

241 Fl

242 F2

243 F3

244 r4
245 F5
246 F6

247 F7

248 F8

249 F9

ASCII SCREEN BASIC
LEFT$
RIGHTS
MID$

O
<

6502 DECIMAL

INY 200

CMP #= 201

DEX 202

203

CYP 204

CMP 205

DEC 206
207

BNE 208

CMP(I),Y 209

210
211
212

CMP Z,X 213

DEC Z,X 214
215

CLD 216

CMP Y 217

218
219

220

CMP X 221

DEC X 222
223

CPX w 224

SBC(I),X 225
226

227

CPX Z 228

SBC Z 229

INC Z 230
231

INX 232

SBC W 233

NOP 234
235

CPX 236

SBC 237

INC 238
239

BEQ 240

SBC(I),Y 241

242
243
244

SBC Z,X 245

INC Z,X 246
247

SED 248

SBC Y 249

241

DECIMAL he:

250 FA
251 FB
252 FC
253 FD
254 FE

255 FF

ASCII BASIC 6502 DECIMAL
250
251
252

SBC X 253
INC X 254

255

242

Appendix ff 2 Wedge Program

LDC CODE LINE

9600
9600
9600
AOOO
A002
A004
A006
A007
A008
A009
A009
A009
A009
AOOC
AOOC
AOOC
AOOC
AOOF
AOIO
A0i;3
A013
A0i3
AC 13
A015
A018
A01I3

AOIC
AOIE
AOIF
AOIF
A021
A023
A025
A027
A029
A02B
A02B
A02Ii

A02B
A02B
A02E
A031
A034
A036
A039

ENTRY CODE

09 AO
2B AO
41 30
C3
C3
CD

20 3F" AO

20 13 AO
58
4C 7B E3

A2 OB
BD IF AO
9D 00 03
CA
10 F7
60

3A C4
83 C4
81 AO
E3 AO
16 Al
3C Al

2C 11 91
20 34 F7
20 El
DO 06
20 42
6C 02

*=»A000
. WOR START
. WOR PANIC
.BYT 'A0',*C3, '^02, «CD - AOCBM

START - SET UP CIP SYSTEM

START JSR MYINIT i GO RESET SYSTEM

START - SET UP BASIC SYSTEM

i INITILIZE VECTORS

i INITILIZE REST

INITVN i INITILIZE THE VECTORS MY WAY

JSR INITVN
CLI
JMP INITNV

INITVN LDX #ITEND-ITBGN-1
INITVL IDA ITBQN, X

STA lERROR,

X

DEX
BPL INITVL
RTS

ITBON WOR NERROR.NMAIN.CNCHST. LISTER,

BYEBYE, EVALMY

I TEND

PANIC - USE THE OLD RETURN

PANIC

FF

AO
CO

BIT DIORAH
USR UDTIM
JSR STOP
BNE PANIC 1

JSR MYREIT
JMP («C002)

i CLR NMI REQ
i CHECK, FOR STOP KEY

; RESTORE MY I/O SYSTEM
; RETURN TO BASIC

243

LOC CODE L. I NE

A03C
A03F
A03F
A03F
A03F
A03F
A042
A045
A048
A04B
A04D
A050
A0S2
A055

A056
A056
AC)56
A056
A058
A05A
A05C
A05E
A05E
A060
A062

4C 56 FF

20 BD FD
20 8A FF
20 F9 FD
20 18 E5
A9 B9
8D 16 03

A2
17 03

PANIC 1 JMP PREND i DO AN EXIT

A9
8D
60

AD A2
64 Al
DF Al
46 A2

92 Al
A3 Al

MYINIT - MASTER SET UP CODE
MYREIT - MASTER RESTORE CODE

J GO TEST RAM
; MOVE OS VECTORS

i GO INIT SCREEN
I RESET BREAK VECTOR

MYINIT JSR RAMTAS
MYREIT JSR MOVOSI

JSR lOINIT
JSR CI NT
LDA #<TIMB
STA CBINV
I. DA #>TIMB
STA CBINV+1
RTS

J DLIST - HOLDS DISPATCH LOCATIONS
; . STARTING VALUE §314
DLIST

. WOR MONTDR-1

. WOR SOUND-!
. WOR SETPLT-l
. WOR PLOT-1

LASTBT =6317
. WOR PDL-1
. WOR JOY-1

LASTFN =6321

1 MONITOR

i SETPLOT

LAST STATEMENT
TOUFN VALUE

LAST FUNCTION
TOKEN VALUE

A062
A062
A062
A062 4D 41
A068 C5
A069 53 4F
A06E AS
A06F 53 45
A075 D4
A076 50 4C
A079 D4
A07A 50 44
A07C CC
A07D 4A 4F
A07F D9
AOSO 00

4F

i LIST - HOLDS ASCII TOKEN TABLES

LIST
.BYT 'MACHIN', tCS i MACHINE

.BYT 'SOUND'. iAB ; SOUND(

.BYT 'SETPL0'.'iiD4 i SETPLOT

. BYT 'PLO', *D4 i PLOT X, Y

BYT 'PD',*CC i PDL

.BYT 'J0',«09 i JOY

BYT «00 ; END OF LIST TABl E

244

LINE

A081
A081
A081
A081
A081
A081
A084
A0B6
A086
A089
Aoes
A08D
AOQF
A08F
A091
A093
A095
A097
A097
A097
A097
A099
A09B
A09D
A09D
A09fc;

AOAl
A0A3
A0A5
A0A7
A0A7
AOAA
AOAC
AOAE
AOAF
A0I31

AOni
A0B3
A0B5
A0B6
A0B7
AOBA
AOBB
AOBC
AOBD
AOBD
AOBD
AOBF
AOCl
A0C2
A0C4
A0C7
A0C7
Aoce
A0C9

20 7C C5
AG 05

B9 FB 01
FO 57
C9 22
FO 47

C9 41
90 40
C9 SB
BO 3C

84 Bl
A2 00
86 OB

38
FD
FO

AO

C9 80
FO 16

BD
FO 27
30 03
EB
DO F6

E6 OB
A4 Bl
A9
CB
B9 FB
E8
DO EO

A6 Bl
A5 OB
18
69 CC
9D FB

CB
EB
B9 FB

NEW CRUNCH ROUTINE
COME TO HERE ON INDIRECT
TOKEN CHAR LIST MUST BE <255 CHARS
COMMAND BUFFER LINE MUST BE <255 CHARS

CNCHST JSR NCRNCH
LDY #5

LOOPOT LDA BUF-S.

Y

BEQ CNCHRT
CMP #'"

BEQ LOOPQT

CMP #'A
BCC LOOPBK.
CMP #'[
DCS LOOPBK

iGO TOKENIZE ALL OLD SYMBOLS
i SET UP TO TOKENIZE ALL NEW

SYMBOLS
iGET DATA BYTE

i IF ZERO THEN EXIT-RETURN
i CHECK FOR QUOTE CASE
i YES. . . GOTO QUOTE LOOP

CHECK IF IN ALPHA RANGE.

NO. . . BELOW
'Z + 1

NO. . . ABOVE

TOKENIZE IF IN TABLES

STY TEMP
LDX #0
STX COUNT

LOOP IN SEC
SBC LIST,

X

BEQ NEXT
CMP #128
BEQ DONE

LOQPND LDA LIST, X

BEQ LOOPBK
BMI CONTLP
INX
DNE LOOPNO

CONTLP INC COUNT
I.DY TEMP
BYT «A9

NEXT INY
, LDA BUF-5, Y

INX
BNE LOOP IN

iHOLD OLD . Y VALUE

/FIND TOKEN

iA MATCHED CHAR

iA MATCHED TOKEN

J NO MATCH LOOP
iAT END OF LIST, DISCARD CHAR
iAT END OF TOKEN, GO COMPARE

TO NEXT
; JMP

i INC TOKEN. COUNT
i POINT TO BEGINNING OF CHECK
;SKIP 1 (LDA «)

i GET NEXT CHAR

;NE:XT IN LIST

DONE - STORE TOKEN AND COMPACT

DONE

LOOPC

LDX TEMP
LDA COUNT
CI.C

ADC #6314
STA BUF-5, X

INY
INX
LDA BUF-5, Y

;GET OLD P08IGTK1N
; (JET TOKEN VALUE

/LAST BASIC TOKEN+VALUC-

i PUT INTO POSISTION

/CRUNCH COMMAND t/TRING DOWN

245

AOCC
AOCF
AODl
A0D3
A0D3
A0D4
A0D6
AOD&
A0D6
A0D6
A0D7
AODA
AODC
AODE
AOEO
AOES
AOEa

A0E3
A0E3
A0E3
AOES
A0E4
A0E6
AOEB
AOEA
AOEC
AOEE
AOFO
AOFl
AOFl
AOFl
AOFl
A0F2
A0r4
A0F5
A0F7
A0F9
A0F9
AOFA
AOFC
AOFC
AOrD
A 100
A 102
A 104
A 104
A105
A 103
AlOA
AlOD
Aior
AlOF
A 1 1 ;•;•

A112
A 1 1

3

9D FB
DO F6
A4 Bl

ca
DO BO

ca
B? FB 01
FO 06
C9 22
DO F6
FO Fl

60

OB
C9 FF
FO 2A
24 OF
30 26
C9 CC
90 22
28

38
E9 CB
AA
B4 49
AO FF

CA
FO 08

C8
B9 62 AO
10 FA
30 F5

CS
B9 62 AO
30 OS
20 D2 rr
DO F5

4C EF C6

28
4C lA C7

STA BUF-5, X

BNE LOOPC
LDY TEMP

LDOPBK INY
BNE LOOPOT

QUOTE LOOP

LOOPQT INY
LDA BUF-5, Y
BEQ CNCHRT
CMP #'"

BNE LOOPQT
UEQ LODPBK

CNCHRT RTS

LISTER - NEW LIST
VECTOR QPLOP TO

LISTER PHP
CMP *2S5
BEQ LEXIT
BIT DORES
BMI LEXIT
CMP #6314
BCC LEXIT
PLP

PRINT TOKEN IN LIST

SEC
SBC #6313
TAX
STY LSTPNT
LDY #255

RESLPl DEX
BEQ RESPRT

RESLP2 INY
LDA LIST. Y
BPL RESLP2
BMI RESLPl

RESPRT INY
LDA I- I ST, Y
BMI RESEXT
JSR BSOUT
BNE RESPRT

RESEXT JMP PRIT4

LS:XIT PLP
-JMP NQPLOP

iUNTILL WE HIT ENDING ZERO
iGET PDSISTION, AND CONTINUE

; IF ZERO THEN AT END OF LINE

i MASTER EXIT

ROUTINE
THIS ROUTINE

; SAVE FOR EXIT
IF PI THEN EXIT

IF QUOTES ON THEN EXII

IF NOT IN RANGE THEN EXIT

TOSS STACK, WILL USE DIFFERENT
l<r-1 URN

i etT INDEX

; SAVE . Y

i LOOP UNTILL TOKEN FOUND
i r-OUND. . , PRINT n

M.OOP UNTILL NEXT IN LIST
FOUND

y l:ND OF TOKEN

i PHI NT OUT TOKEN LIST

; ALL DONE
; OUTPUT THE CHAR

i GO BACK TO BASIC

; RESTORE STATUS
i 00 BACK TO NORMAL LIST

246

CODE

A116
MAh
A116
A119
AllB
AllD
AllF
A121
A 124
A 127
A127
A 129
A12A
A12B
A12E
A12F
A 132
A 1 33
A 1 3/i

A 1 36
A 1 39

BYEBYE - THIS IS THE NEW COMMAND DISPATCHER

20 73 00
C9 CC
90 19
C9 DO

15
27

BO
20
4C

Al
AE C.7

E9 CB
OA
AB
B9 57 AO
48
09 56 AO
48
4C 73 00

20 79 00
AC E7 C7

BYEBYE JSR
CMP
BCC
CMP
BCS
JSR
JMP

BYEGO

BYERTS

SBC
ASL
TAY
LDA
PHA
LDA
PHA
JMP

JSR
JMP

CHRGET
#6314
BYERTS
#LASTST+1
BYERTS
BYEGO
NEWSTT

#6313
A

DLIST+1, Y

DLIST,

Y

CHRGET

CHRGDT
NGONE

1

i GET THE NEXT CHARACTER
CHECK TO SEE IF IN OUR LIST
NO. . . LEAVE
CHECK TO SEE IF BEYONU
YES. . . LEAVE

i F<ETURN

i SUB S314
i MULT »2
;GOTO THE ROUTINE

; SAME DISPATCH AS GONE

i RESTORE POINTERS

A 1 3C
A13E
A 140
A 143
A 14?)

AI47
A 149
A 1 'I B

A14D
A 1 4K
A14r
AlliP
A1'J3
A1'.j6

A J :y7

A J '(A

Al'SA
A IDC
AiriE

A 160
A 162

00
OD

A9
85
20
C9
90
C9
BO
E9
OA
AH
B9
413

D9
4a
4C

AS /A
DO o:;-

C6 7U
C6 7A
4C 86 Cf;

LDA #0 J COPY FROM EVA

STA VALTYP
,;GR CHRGET
CMP tLASTBTH i IS IT IN RANGE
BCC EVALLV ; ND. .

CMP #LAS"rFN+l
liCS EVALLV ; NO. . .

BBC #('?313 iSUB (5314

ASL A . MUl.-«2

TAY
LDA DL4SI < 1. Y

PHA
LDA Di.rsr, Y

I'HA

JMP CHROKt

EVALLV LDA TXIPTR
IINC E.VALRT
DEC rXIPTPH-l

EVALK r DEC IXIPTR
JMP NEVAL

; HACK UP TXTPTR

247

A165
A165
A165
A167
A16A
At6D
A16E
A16F
A172
A175
A 176
A17B
A17A
A17D
A17F
A181
A 183
A 185
AISS
A 188
A 188
A1B9
A18C
AlOF-

A 190
A19L'

SOUND (X1,X2, X3, X4, AM)

A2 00 SOUND LDX #0
8E 00 01 SLOOP STX FBUFFR
20 9E D7 vlSR GETBYT
AB TAY

BA TXA
AE 00 01 LDX FBUFFR
9D 01 01 STA FBUFFR+1,

X

E8 INX

EO 06 CPX #6
BO OB BCS SDERR
20 73 00 JSR CHRGET
CO 29 CPY #')

FO 07 BEQ SMDVR
CO ?C CPY «',

FO E2 BEG SLOOP

4C 08 CF SDERR JMP SNERR

i INDEX
; IN A TEMP

SAVE CHRSOT

COUNT
INDEX INTO TEMP ARfcA

CHECK FOR TOO MANY PRAMS
YtS. , . TOO MANY
Ctn NEX1- CHAR
AT END?. . .

YtS. . . EXIT TO MOVER
MUST HAVE GOTTEN A SEPtRATOR
YLO, . . CONTINUE

CA SMOVR DEX
BD 01 01 SMOVL LDA FBUFFR+l.X
9D OA 90 2TA VICREG+10,

X

CA DEX
10 F7 UPI. SMUVL
60 «Tfi

i SYNTAX ERROR

MOVE TO VIC REGS

248

CODE

A193
A193
A193
A196
A19B
A19A
A19D
AlAO
AlAl
AlAI
A1A4
A1A4
A1A4
A1A7
A1A8
AlAA
AlAD
AlBO
A1H3
A1B5
A)B5
A1.B7
A 113A
AlBC
AIDF
A ICO
AICO
A1C3
A1C6
AlCB
Aica
A)C9
AlCB
AlCC
AlCE
AIDO
AID?
A 1 D3
A1D4
A1D6
A1D8
A1D9
A IDA
A 1 DC
AIDD
AlHO
AlttO
A J E

AJhO
AlEO
A) EO
Alfc'O

rtlEO
AlE'vT

AlEO

20 9E D7
EO 02
90 03
4C 48 D2
BD 08 70
A8
4C A2 D3

20 9E D7
78
A2 7F
BE 22 91
AC 20 91
CC 20 91
DO F8

; PDL(X) OR POL X

PDL

X=^0 OR 1

JSR OETBYT
CPX #2
BCC *+5

PDLERR JMP FCERR
LDA VICREG+B, X

TAY
JhP BNGFLT

i ONLY OR 1

1 OKAY
i ILLEGAL aUANITITY

;MAKE IT A NUMBER

JOY (X) XMUST BE A BYTE VALUE

FF
22
F7
20

JOY JSR GETBYT
REDJOY SEI

LDX #«7F
STX D2DDRB

JOYLPl LDY D20RB
CPY D20RB
BNE JOYLPl

LDX #«FF
STX D2DDRB
LDX »»F7
BTX D20RB
CH

AD IF 91

CD IF 91
DO F8

IC
4B
29
4A
CO 80

02
10

90
09
AB
6S
29 20
C9 20
9B
6A
49 8F
AH
4C A2

J0YLP2 LDA DIDRA
CMP DIORA
BNE J0YLP2

'

PHA
AND #y.oooiiioo
LSR A
CPY #*80
BCC JDYLPS
ORA #-/.oooioooo

jOYLp;:i TAY
PLA
AND tf/.ooiooooo
CMP MV.OO 100000
TYA
ROR A
EDR #7.100011 11

TAY
JMP SNGFLT
END
LIB PLOT

GHPNr =;»FD

TUMP J -«FU
TFMP2 -*F(
GRSCRN ^*100()

i CANNOT INTERRUPT

i GET J0Y3

i RESET DDRB

I RESTORE STOP KEY CHECK

i RESTORE IRO'S

; GET JOYO. 1.2 S< BUTTON

i MA3K OF JOYS
r MOVE DOWN ONE
: CHECK FOR A J0Y3

i GIT, TURN CIN

; MOVE TO TEMP

i MASK ON BUTTON
i CHECK FOR EXISTANCE

i MOVE SO 7=HUT10N 3210=JDY&
; FLIP SO POS LOGIC

; MAKE IT A NUMBER

COLLEM a.'jO

, HI rfl; PI or logic

249

AlEO StlHI.T
AlEO A2 00 I.DX *0
A1E2 AO 10 I.DY ««10
A1E4 la CLC
AlES 20 99 FF JSR MEMTOP
AlEB A9 IE L.DA #tl£
AlEA 85 FE STA GRPNT+1
AlEC 86 FD STX GRPNT
AlEE 8A TXA
AlEF A8 TAY
AlFO 48 SCRNL PHA
AlFl A2 13 LDX tl9
AIF3 91 FD SCRNM STA (GRPNT)Y

AlFS IB CLC
AlF-6 69 OA ADC #10
A1F8 ca J NY
A1F9 DO 02 BNE QK
AlFB E6 FE INC GRPNT+1
AlFD OR
AlFD CA DEX
Aire DO F3 13NE SCRNM
A200 68 PLA
A20). 18 Cl-C

AS02 69 01 ADC (tl

A204 C9 OB CMP #1 1

A20fa DO EB BNE SCRNL

i MOVE TOP OF MEMORY DELOW HI RE3

/SCREEN RAM WILL BE AT «1E00

; SET UP SCREEN SO ALL CHARACTERS
; START WITH CHARACTER O

; SAVE "BiJSE" CHARACTER/POINTFR
I 19 CHARACTERS PER LINE

; PUT THE CHARACTER POINTER

i GF.-T BASE CHAR

: ALL 190 CHARACTERS UP YET"

A20B A9 15 IDA «»15
A20A SD 03 90 STA VICREGt
A20D AD 02 90 LDA V1CREG+
A210 29 80 AND #*80
A? 1

2

09 13 ORA »*13
A214 BD 02 90 STA VICHEG+
Aa 1

7

A9 FO LDA (t»ro

AH 1

9

2D 05 90 AND VICREG+
A2 1

C

09 OC OR A #»0C
A21E BD 05 90 STA VICREGf
A221 SETCOI.

A2:.' 1 A2 02 LDX »2
A223 AO 00 I.DY #0
A22& AD 86 o;;' LDA COLOR
A;.'20 CLOOP
A;.?2B 99 00 9i<j iJTA t9600,

Y

a;.';-?b 99 00 97 STA t9700,

Y

iV.'S'E CO INY
Apy.T DO ry BNE CLOOP
a;,;:ii

A231 A9 10 I.DA »tio
A233 85 FE HTA GRPNT+1
A23S A9 00 LDA (to

A237 85 FD KTA GRPNT
A239 AB TAY
A23A AS oe: I.DX #14

; HE- r VIC FOR 10 ROWS

; mix CURENT COLUMNS
; KE-EP THIS BIT
, OR n WITH 19 CDLUMS

MAKE SURE KATAKANA IS OFF
PUT VIC IN HI--RFS AT -tlOOO
SET VIC CHAR ADRS TO HOOO

14 PARES

250

LOC CODE

A2ac
A23C 91 FD
A23E CS
A33F DO FB
A241 E6 FE
A243 CA
A244 DO F6
A246 60

A24;
A3A7 20 9E D7
A24A EO 98
A24C 90 02
A?4E A2 97
A3 50
A250 B6 FB
A252 20 FD CE
A255 20 9F D7
A258 EO AO
A25A 90 02
A25C A2 9F
A25E
ASriE 86 FC
lY.itM

A260 A 5 FD
A2i2 4A
A263 4A
A264 4A
A265 OA
A266 AA
A267 BD 88 A2
An6A 85 FD
A26C BD 89 A2
A26F 85 FE
A271
A271 A5 FB
A273 29 07
A27b AA
A276 BD SO A2
A279 A4 FC
A27B 11 FD
A27D 91 FD
A27F 60

A280 SO
A2B1 40
A2B2 20
A2S3 10
A284 OS
Aa85 04
A286 02
A287 01

CLRIT
STA (GRPNT)Y
INY
BNE CLRIT
INC GRPNT*-!
DEX
BNE CLRIT
RTS

JSR GETBYT
CPX #152
BCC DTAOK
LDX #1S1

HTX TEMPI
JGR CHKCnM
JSR GETBYT
CPX #160
BCC YISQK
LDX #159

HTX TEMP2

I. DA TEMPI
LSR A
LSR A

LSR A
ASL A
TAX
LDA GRTBLE.

X

F;TA GRPNT
LDA GRTBLE^ J ,

STA GRPNT+1

I. DA TEMPI
AND #7
TAX
LDA XBITS, X

LDY TENP2
nRA (GRPNT)Y

STA (GRPNT)Y
RfS

SCT X VALUE
DIVIDE BY 8
TO GET TABLE INDEX

1 MAKE IT AN ADDRtSS INDEX

it-Et LO DYT OF COLUMN POINTER
i POINT INDIRECT HERE

1 «FT THE BIT TO SEl

GET BIT
SET ROW
SET THE
DISPLAY

FROM TABLE
INDEX
BIT
IT

BYT «80. *40, -620, tlO, »00, *04, *0?, tOl

251

A28B
A288
A288
A288
A288
A28B
A2B8
A288
A2BS
A2BB
A2BB
A288
A288
A2BB
A2BQ
A2BS
A283
A28B
A28B

A2BB 00 10
A2QA AO 10
A28C 40 11

A»QE EO 11

A290 80 12
A£'92 20 13

Aa94 CO 13
A296 60 14

A298 00 15
A29A AO 15
A29C 40 16
Aa9E; EO 16
A2A0 80 17
A2A2 20 IS
A2A4 CO 10

A2A6 60 17
AHAS 00 lA
A2AA AO lA
A2AC 40 113

CQLO=GRSCRN
CQL1=C0L0+C0LLEN
C0L2=C0L1+C0LLEN
C0L3=C0L2+C0LLEN
C0L4=CDL3+C0LLEN
C0L5=C0L4+C0LLEN
CQL6=C0L5+C0LLEN
C0L7=CDL6+C0LLEN
C0LB=C0L7+C0LLEN
C0L9=C0L8+C0LLEN
COL 1 0-.C0L9+C0LLEN
CDL11=C0L10+C0LLEN
C0L12==C0L1 1+COLLEN
CDL 1 3»C0L 1 2+COLLEN
COL 1 4^=C0L 1 3+COLLEN
COL 1 5=CDL 1 4+COLLEN
C0L16=--CDL15+C0LLEN
C0L17=C0L16+C0LLEN
C0L18=COL17+C0LLEN

GRTBLE . WGR COLO
WQR COLl

. WOR CDL2

. WOR C0L3
. WQR C0L4
. WOR COL5
. WOR C0L6
WOR C0L7

. WOR CDL8
, WOR CQL9
. WOR COLIO
. WOR COLll
. WOR C0H2
. WOR CDL13
. WOR CQL14
. WOR C0L15
, WOR CDL16
. WOR CDL17
. WOR COL 18

252

Appendix Xf 3
6502 Instruction Set - Hex ant Timing

IMPLIED ACCUM. ABSOLUTE ZERO PAGE IMMEDIATE ABS. X

MNEMONIC OP n i OP n # OP n # OP n # OP n # OP n #

ADC fTl 6D 4 3 65 3 2 69 2 2 7D 4 3

AND (T) 2D 4 3 25 3 2 29 2 2 3D 4 3

A S L OA 2 I OE 6 3 06 5 2 IE 7 3

B C C (2)

B C S (2)

B E Q
B I T

(2)

2C 4 3 24 3 2

B M I (2)

B N E (2)

B P L (2)

B R K 00 7 I

B V C (2)

5 V S (2)

C L C 18 2 I

C L D D8 2 I

C L I 58 2 I

C L V B8 2 I

CD 4 J C5 3 2 C9 2 2 DD 4 3

C P X EC 4 i E4 3 2 EO 2 2

C P Y CC 4 3 C4 3 2 CO 2 2

DEC CE 6) C6 5 2 DE 7 3

D E X CA 2 I

D E Y

E R

I N C

(I)

88 2 I

4D

EE

4

6

J

3

45

E6

3

5 ;

49 2 2 5D

FE

4

7

3

3

I N X E8 2 I

I N Y CO 2 I

J M P 4C 3 3

J S R

L D A (T)

20

AD
6

4

3

3 A 5 3 2 A9 2 2 BD 4 t

L D X (I) AE 4 3 A(> 3 2 A2 2 2

L D Y

L S R

(I)

4A 7 1

AC
4E

4

6

)

3

A4

4()

)

2

AO ^ "

5E

4

7 3

NOP
R A

EA ' I

OD 4 3 05 3 2 09 2 2 ID 4 (

P H A 48 ^ 2

PHP 08 J I

P L A 68 4 I

P L P 28 4 I

R L 2A 2 I 2E (. 1 26 5 2 fE 7 \

R R bA 2 I 6E 6 ! (>6 5 2 7E 7 i

R T I 40 fi I

R T S 60 6 I

SBC {I) ED 4 t E5 \ 2 E9 2 2 FD 1 1

SEC
S E D FR

i,
I

T

S E I 78 .
I

S T A HD 4 i H5 ID 5 i

S T X 8E 4 1 8(. 2

STY ac 4 \ 84 2

TAX AA 2 I

T A Y A8 2 1

T S X BA :>. I

T X A 8A 2 I

T X S 9A >
T

T Y A 98 2 I
1

253

PROCESSOR

ABS. Y (IND. X) {IND)Y Z.PAGE,X RELATIVE INDIRECT Z.PAGE,Y STATUS CODE

OP n # OP n # OP n # OP n # OP n # OP n # OP n # N V BDIZC

79

39

4

4

3

3

61

21
6

6

2

2

71

31

5

5

2

2

75

35

16

4

4

6

2

2

2

90
BO

2

2

2

2

• • ••

• •

• ••

FO

30

DO
10

2

2

2

2

2

2

2

2

•

SO
70

2

2

2

2

D9 4 3 CI 6 2 DI 5 2 D5 4 2

• • •

• • •

• • •

59 4 3 41 6 2 51 5 2

D6

55

F6

6

4

6

2

2

2

• •

• •

• •

• •

B9 4 3 AI 6 2 B1 5 2 B5 4 2

6C 5 3

• *

• •

• •

BE

19

4

4

3

3 01 6 2 II 5 2

B4

56

15

4

6

4

2

2

2

B6 4 2 • *

• •

• •

• •

36 6 2

• •

• • •

F9 4 3 EI 6 2 FI 5 2

76

F5

5

4

2

2

• • •

• • • «

99 5 3 81 G 01 6 2 95

94

4

4

2

2

96 4 2

• •

• •

• •

• •

• •

254

Appendix tt 4 Hex-Dec

r-lM^tOt^OJOM^lOr-OOONMint-(r-l<-lrHiH.-1ClMC4N

rHlHr-trHiHrHMNNN

r-|r-4i-tiHi-li-IO)NNC4

o(ON001'O^DN«'''0(OC^Jao3o

OO^OCDNOO^OtDNOO'^OtONCO
r-tr-tr-<.Hrtt-IN<N(NiM

MMirsh-coo'-'comtoooCTJ'-'f^'J'r-lrHHrHr-lfHrHMegN

i-liHHiHrHr-(f-ICflNCi)

rHcoiotooooj'-i'^'^toh-OJ'-'N'''

i-HiHi-tiH'Hi-tNNN

255

'(. N n •s- in to r^ cn ^ CM CO ^ in

td
a

o

X
g

O t-l CO ^ to r- Oi < CQ CJ Q u b

O «3 <N u '!J' o to N 00 T o to CM 00 T o
cn ^ to 00 0> M rr to r* Oi o CM

""^ f-f CM CM

-^

X
CJ CO T in (O r- Q

33

N 00 -'T o to eg 00 ^ to CM 00 TT p
rH rr o h-

N in r» O N in .t^ o CO in n O CO in 00

.H r-< rH rH M e*» CM CM CO CO . CO CO

CSl

X
sg

O --1 M to t>- o> < u bd w

M 00 •a* o to O) 00 n' o CM 00 V o
u 0) 0) t* r- to to to in

g
o eg CO rr in to t* 00 O) o •"* CM CO <r

<}' 00 IN to o TT 00 e*j to o m 01 CO I^ ^
C^ M CO CO V V '«I' in to

CO

g
O rH N 'J' tn to r* 00 o» < m u o u f**

M 00 ^ s to M CO V CM CO v o
t^ o V rH in C4 to O) CO to o

u in O to fH to N t^ C4 CO •v Ol o
H tn iH to N (^ CO 00 ^ Oi in o

s
^ N CO

to CO N m N in M m 00
N CO ^ in to r- t- o»

tj"

X
s

o <-t M CO ^ m to h» cn < u Q u

O (0 C4 00 T s to eg 00 T o to CM 00 ^
§in N O in o to H to

in t-i h. « ^ o to CO 0) f to

CO t- m ^ tN i-\ o 00 t* in «!• CM rH
s

00
00 CO « CO » CO C4

o rH CM N CO CO ^ TT m •rt to to

in Q N CO •<? ift to h> m" CI O H CM CO
rH

m
rH

X
O --I M CO -"J* in to r* 00 Ol < CQ U o u fiM

256

Appendix#5

Circuit Diagrams

1

E>^-

Circuit 1

«» Imb Ibz7 Iueio
1.211 Sl.ltS JtiR USOZA

0A7H

Rm

u.c.

IJ.C.

epg-gyrggs.

UFS

M.C-3-0l(OlItl

PdO y

Lril _''1i:*°*J

257

sag
^S>

for <

czzicz, CZ>J^

E>J

vpft-vpn

I

z
3
4.

1

-ci>

c
o
a

o
c
5
q

BP»-«"

ceypV«M

-a3>
-CE>

ic7 ic* I C

Circuit 1

258

Circuit 2

[r>

aa>-Bei8^s2i

ITTsy

a3>

259

Circuit 2

260

Circuits

cr>

CC^

|S>

CO

ITX>

261

Circuits

-A*

UD4
2114

- A<»

vss
£5

UE5
2114

-fVW

tl im

A0

vss
C5

U0&
2114

A-?

R/W

1314

A0

9

2114

A»

CI4.
.1

1
1SS
£3

UDb
aiM

A«J

R/W CA12 21

^

MS 23

CAio iq
CA». 16

CPI 10

CD6 1

SV C43

UEU
2364

"IT

A»

r•-1

UE12
2364

VAg

-^ST"
AJI

VA3

"V^Afe
VA7 I

VAe Z3
VAI Zl
VAIO iq

VA12 ii

VA13 1i

BDg

am RBD7 n

jr

JM.

C3B
.1

UD7
2332

All

CS2
«l
D0

JlZ-

262

APPENDIX 6
COMMANDS USED BY VIC MACHINE CODE MONITOR
All commands are displayed in BOLD TYPE

simple assembler
.a 2000 a9 12 Ida No. $12

.A 2002 9D 00 80 STA$8000,X

.A 2005 DEX GARBAGE
In the above example the user started assembly at 2000 hex. The

first instruction was load a register with immediate 12 hex. In the

second line the user did not need to type the A and address. The

simple assembler retyped the last entered line and prompts with the

next address. To exit the assembler type a return after the address

prompt. Syntax is the same as the disassembler output. A ':' can be

use to terminate a line.

disassembler
.d 2000

., 2000 A9 12 LDANo. $12

., 2002 9D 00 80 STA $8000,X

., 2005 AA TAX
disassembles to the end of memory starting at 1000 hex. The three

bytes following the address may be modified. Use the CRSR keys to

move to and modify the bytes. Hit return and the bytes in memory
will be changed. Monitor will then disassemble that line again.

.d 2000 3000

disassembles from 2000 to 3000.

fill memory
.f 1000 1100 ff

fills the memory from 1000 hex to 1 100 hex with the byte ff hex.

go run
g
go to the address in the pc register display and begin run code. All

the registers will be replaced with the displayed values.

.g 1000

go to address 1000 hex and begin running code.

hunt memory
.h cOOO dOOO read

hunt through memory from cOGG hex to dOGO hex for the ASCII string

read and print the address where it is found. A maximum of 32

characters may be used.

263

.h cOOO dOOO 20 d2 ff

hunt memory from cOOO hex to dOOO hex tor the sequence of bytes

20 d2 ff and print the address. A maximum of 32 bytes may be used.

Hunt can be stopped with the stop l<ey.

integerate memory
.1 fOOO

.' fOOO 54 4f 4f 20 4d 41 4e 59 too many

.' F008 20 46 49 4C 45 D3 46 49 FILES Fl

displays hex and ascii until the end of memon/.

.1 fOOO f080

displays hex and ascii from fOOO hex to f080 hex.

load from tape
.1

load any program from cassette No. 1

.

.1 "ram test"

load from cassette No. 1 the program NAMED RAM TEST

.1 "ram test" .02

load from cassette No. 2 the programme NAMED RAM TEST

beware load with a file name breaks the irq saved by the monitor. Do
not use go command after load or save. Exit to basic and re-enter

monitor.

memory display
.m 0000 0080

.: 0000 00 01 02 03 04 05 06 07

.: 0008 08 09 OA OB OC OD OE OF

display memory from 0000 hex to 0080 hex. The bytes following the

address may be modified by editing and then typing a return.

new locater

.n 7000 77ff 1000 0400 8000

.n 7000 77ff 1000 0400 8000W
relocates machine code from 7000 hex to 77ff hex to a new location

at 1000 hexf. New locater fixes all 3 byte instructions in the range

0400 hex to 8000 hex. The 'W option will relocate word tables only.

New locater will not move instructions of 00. Transfer the tables first

then zero tables in the form copy. New locater stops and

disassembles on a bad op code.

264

register display
.r

pc sr ac xr yr sp

., 0000 01 02 03 04 05

displays the register values saved when monitor was entered. The

values may be changed with the edit followed by a return.

use this instruction to set up the pc value before single stepping

with.

save to tape

.s "program name" ,01 ,0800 ,0c80

save to cassette No. 1 memory from 0800 hex up to but not

including 0c80 hex and name it program name.

beware save with a file name breaks the irq saved by the monitor.

Do not use go command after load or save exit to basic and re-enter

monitor.

walk code
.w

single step starting at address in register pc.

.w 1000

single step starting at address 1000 hex. Walk will cause a single

step to execute and will disassemble the next instruction.

control speed with choice of key:

K for single step;

RVS for slow step:

SPACE for fast stepping

exit to basic

.X

return to basic ready mode. The stack value saved when entered will

be restored. Care should be taken that this value is the same as

when the monitor was entered. A cir in basic will fix any stack

problems.

265

INDEX

A/D converters - 114

Absolute Addressing — 12

Absolute Indexed Addressing — 12

Accumulator — 7, 11

Addition - 8

Addressing Modes — 11

Arithmetic Unit - 7, 16

Arrays - 65

Array Format — 69

ASCII -60,64
ASCII files - 191

Assembler - 29, 39

Basic Buffer - 48

Basic Interpreter - 45, 47, 71

Basic Tokens - 60,61, 191

Binary Files - 189

Branch - 16

Break command - 15,25

Carry Flag - 7, 14

Cassette - 188

Cassette Buffer - 49, 191

Cassette Motor - 188

Character Generator - 44, 113, 117,

120, 136

Chargot - 104

Chip Select - 156

Clock - 154

Colour -45, 137

Colour RAM - 45, 112, 137

Data Direction Register - 158, 160

Data Modify Instructions — 23

Data Storage — 65

Decimal Mode — 14

Device Numbers — 227

Display Modes - 120

Display Format - 134

Division — 9

Flags - 14, 17

Floating Point Accumulator — 71

Floating Point Variables — 65

Floppy Disk - 225

Flow D iagrams — 34

Function Control - 181

Function Keys - 202

Garbage Collection - 70

Hand Assembly - 34

Handshake Lines — 181

High Resolution Display - 127

I/O -45,152, 160

I FEE 488- 224-236

IEEE Connector- 225

IEEE Timing -228,233
Immediate Addressing - 11

Implied Addressing — 11

Index Registers - 12,20,21

Indexed Addressing - 12,21

Indirect Indexed Addressing — 13, 21

Initialisation - 24, 102, 106

Integer Variables — 65

Interrupt - 14,24, 177

Interrupt Disable — 14

Interrupt Vectors — 25

IRQ - 24,156

Joystick- 114,216-220

Jump - 16, 19

Kernal - 90-101

Keyboard - 197-203

Keyboard Buffer - 199

Light P^n - 114,117
Line Number - 62

Link Address - 62

Loader - 30

Logical File Number - 227

Logical Operations — 10

Machine Code - 27,32
Machir*e Code Monitor - 29, 39
Memor7 Expansion - 221-223

Memory Map — 44
Memor7 Usage and Inst Cycle — 3

Microprocessor 6502 - 2

Multicolour Mode - 139

266

Multiple Precision

Multiplication — 9

Music - 143, 148

Negative Flag - 15

New Basic Instructions

NMI - 24

Op-Code - 16

Operand - 16

Operating System - 45, 47, 71

Overflow Flag — 14

Page Zero Mennory - 12

Processor Status Register - 14

Program Counter — 16

Program Storage Format - 60

Pull Accumulator - 20

Push Accumulator - 20

RAM -3,44
Recording Format —
Registers 6522 - 152

Registers 6561 - 113, 115

Registers RS232 - 207, 209, 211

Relative Addressing - 12

Reset Vector - 25

ROM -3,45
RS-232 - 164,204-215

Screen Centering - 115

Serial I/O - 164, 204-215, 224-236

Shift Register - 173

Sound Generators - 114, 118, 144

Stack- 19,47,81

String Variables - 65

Subroutines — 73, 89

Subtraction - 9

SYS - 27, 38

System Variables - 44, 47, 50-59

Talk and Listen -224
Tape Error Checking - 192

Tape Format — 190

Timers — 164

Top of Memory Pointers - 28

User Definable Characters - 121

User Memory — 60

User Port - 152-184

USR - 27,38

Variable Pointer - 65

Variable Storage - 65

Vectored Jumps - 48, 89

VIA 6522 - 152-184

VIC 6561 - 112-148

Video Matrix - 115, 128

Video RAM - 112, 136

Wedge code - 104

Zero Flag — 15

Zero Page Addressing - 12

267

